CS 280 Prelim 1 Solutions

For some of the solutions, we are only providing the answer. This is for your benefit: it is much faster for us to type up the answer than it is to show all of the steps. Thus, you get this solution set much faster.

1 Truth Tables

The most straightforward solution is $(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r) \vee(p \wedge q \wedge \neg r)$.

2 Existential Quantification

(Note there are many possible solutions to this one.)
Let the domain for variable x be $\{1,2\}, A(x)$ be the proposition " $x=2$ ", $B(x)$ be the proposition " $x=0$ ". Then $A(1)$ is false, and $B(1)$ is true, so $A(1) \rightarrow B(1)$ is true; therefore $\exists x[A(x) \rightarrow B(x)]$ is true.

However, $A(2)$ is true, and $\exists x B(x)$ is false. Therefore $\exists x A(x) \rightarrow \exists x B(x)$ is false.

3 Empty sets relating to sets

(a) $\varnothing \in\{\{\varnothing\}\}$ No
(b) $\varnothing \subseteq\{\{\varnothing\}\}$ Yes
(c) $\{\varnothing\} \in\{\{\varnothing\}\}$ Yes
(d) $\{\varnothing\} \subseteq\{\{\varnothing\}\}$ No- The subsets of $\{\{\varnothing\}\}$ are \varnothing and $\{\{\varnothing\}\}$.
(e) $\{\varnothing\} \in P(\{\{\varnothing\}\})$ No- equivalent to (d).

4 1-1 functions

Let $f: S \longrightarrow T$ and $g: T \longrightarrow U$ be functions.
(a) Claim: If $g \circ f$ is $1-1$, then f is 1-1.

Proof. Given $x, y \in S$, suppose $f(x)=f(y)$. Then $g(f(x))=g(f(y))$ since g is a well-defined function, i.e. $(g \circ f)(x)=(g \circ f)(y)$. Since $(g \circ f)$ is 1-1, $x=y$. We conclude that f is also 1-1.
(b) (Note there are many possible solutions to this one.)

Let $S=T=U=R$, the set of real numbers. Define $g(x)=x^{2}$, and $f(x)=e^{x / 2} \cdot g(x)$ is not 1-1: for example, $g(1)=g(-1)=1$. However, $(g \circ f)(x)=e^{x}$ is 1-1.

5 Matrices

The answer is $\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$.
$A \cdot B+A \cdot C+A \cdot D=A \cdot(B+C+D)$. And it is straight forward to see that $B+C+D$ is null.

6 Fermat's Little Theorem

$49=7^{1000002} \bmod 101$.

7 Chinese Remainder Theorem

Using the theorem, $x=1002$.

8 Induction

Induction Hypothesis:

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}
$$

Base case: $n=1$. Clearly, $\frac{1}{(2-1)(2+1)}=\frac{1}{2+1}$.
Induction step: Assume the induction hypothesis is true for n. We prove it is true for $n+1$.

$$
\begin{gathered}
\sum_{k=1}^{n+1} \frac{1}{(2 k-1)(2 k+1)}=\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2(n+1)-1)(2(n+1)+1)} \\
=\frac{n}{2 n+1}+\frac{1}{(2(n+1)-1)(2(n+1)+1)} \quad \text { by induction hypothesis } \\
=\frac{n}{2 n+1}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n(2 n+3)}{(2 n+1)(2 n+3)}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n(2 n+3)+1}{(2 n+1)(2 n+3)} \\
=\frac{2 n^{2}+3 n+1}{(2 n+1)(2 n+3)}=\frac{(2 n+1)(n+1)}{(2 n+1)(2 n+3)}=\frac{(n+1)}{2(n+1)+1} .
\end{gathered}
$$

By induction, the hypothesis is true for any positive integer n.

