CS 280 Prelim 1 Solutions

For some of the solutions, we are only providing the answer. This is for your benefit: it is much faster for us to type up the answer than it is to show all of the steps. Thus, you get this solution set much faster.

1 Truth Tables

The most straightforward solution is $(\neg p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r).$

2 Existential Quantification

(Note there are **many** possible solutions to this one.)

Let the domain for variable x be $\{1,2\}$, A(x) be the proposition "x = 2", B(x) be the proposition "x = 0". Then A(1) is false, and B(1) is true, so $A(1) \to B(1)$ is true; therefore $\exists x[A(x) \to B(x)]$ is true. However, A(2) is true, and $\exists xB(x)$ is false. Therefore $\exists xA(x) \to \exists xB(x)$ is false.

3 Empty sets relating to sets

(a) $\emptyset \in \{\{\emptyset\}\}$ No

- (b) $\emptyset \subseteq \{\{\emptyset\}\}$ Yes
- (c) $\{\emptyset\} \in \{\{\emptyset\}\}$ Yes
- (d) $\{\emptyset\} \subseteq \{\{\emptyset\}\}$ No– The subsets of $\{\{\emptyset\}\}$ are \emptyset and $\{\{\emptyset\}\}$.
- (e) $\{\emptyset\} \in P(\{\{\emptyset\}\})$ No– equivalent to (d).

4 1-1 functions

Let $f: S \longrightarrow T$ and $g: T \longrightarrow U$ be functions.

(a) Claim: If $g \circ f$ is 1-1, then f is 1-1.

Proof. Given $x, y \in S$, suppose f(x) = f(y). Then g(f(x)) = g(f(y)) since g is a well-defined function, i.e. $(g \circ f)(x) = (g \circ f)(y)$. Since $(g \circ f)$ is 1-1, x = y. We conclude that f is also 1-1.

(b) (Note there are **many** possible solutions to this one.)

Let S = T = U = R, the set of real numbers. Define $g(x) = x^2$, and $f(x) = e^{x/2}$. g(x) is not 1-1: for example, g(1) = g(-1) = 1. However, $(g \circ f)(x) = e^x$ is 1-1.

5 Matrices

The answer is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$. $A \cdot B + A \cdot C + A \cdot D = A \cdot (B + C + D)$. And it is straight forward to see that B + C + D is null.

6 Fermat's Little Theorem

 $49 = 7^{1000002} \bmod 101.$

7 Chinese Remainder Theorem

Using the theorem, x = 1002.

8 Induction

Induction Hypothesis:

$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$$

Base case: n = 1. Clearly, $\frac{1}{(2-1)(2+1)} = \frac{1}{2+1}$. **Induction step:** Assume the induction hypothesis is true for n. We prove it is true for n + 1.

$$\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$$

$$= \frac{n}{2n+1} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$$
 by induction hypothesis

$$=\frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)}{(2n+1)(2n+3)} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)+1}{(2n+1)(2n+3)}$$

$$=\frac{2n^2+3n+1}{(2n+1)(2n+3)}=\frac{(2n+1)(n+1)}{(2n+1)(2n+3)}=\frac{(n+1)}{2(n+1)+1}$$

By induction, the hypothesis is true for any positive integer n.