Show all your work.

1. (15 points) Determine which of the following propositions are tautologies
a) $(p \rightarrow \neg p) \leftrightarrow \neg p$
b) $(p \rightarrow \neg q) \leftrightarrow \neg(p \wedge q)$
c) $((\neg p \wedge q) \rightarrow r) \rightarrow((\neg q \rightarrow p) \rightarrow r)$.
2. (15 points)
a) Establish the logical equivalence of $\neg \forall x(A \rightarrow B)$ and $\exists x(A \wedge \neg B)$.
b) Show that $\exists x(A(x) \wedge B(x))$ and $\exists x A(x) \wedge \exists x B(x)$ are not logically equivalent.
3. (15 points) The composition of functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(a)=$ $f(g(a))$. The inverse of h is the function h^{-1} such that $h^{-1} \circ h$ and $h \circ h^{-1}$ are identity functions, i.e. $\left(h^{-1} \circ h\right)(a)=a$ and $\left(h \circ h^{-1}\right)(b)=b$ for all a from the domain of h and all b from the codomain of h.
a) Give an example of f and g such that $f \circ g$ and $g \circ f$ are different
b) Suppose f and g are invertible. Show that $(f \circ g)^{-1}$ equals to $g^{-1} \circ f^{-1}$.
4. (10 points)
a) How many multiplications does the standard row-column algorithm uses to compute the product of an $m \times n$ matrix and an $n \times p$ matrix? Explain why.
b) Suppose you have to find $A \cdot B \cdot C$, were A is a 3×10 matrix, $B-10 \times 50$ matrix and C 50×2 matrix. Which order should you choose: $(A \cdot B) \cdot C$ or $A \cdot(B \cdot C)$?
5. (15 points) Compute the greatest common divisor (gcd) of 156 and 93. Find integers x and y such that $156 x+93 y=\operatorname{gcd}(156,93)$.
6. (10 points)
a) Find the base 8 expansion of $(123)_{10}$.
b) Find the binary expansion of $(123)_{10}$
7. (20 points) By the Chinese Remainder Theorem for each integers a, b and $c(0 \leq a<9$, $0 \leq b<10$ and $0 \leq c<11$) there is a unique nonnegative integer $x<990=9 \cdot 10 \cdot 11$ such that $x \equiv a(\bmod 9), x \equiv b(\bmod 10)$ and $x \equiv c(\bmod 11)$.
a) Find such a, b and c for $x=801$.
b) Find a positive integer x satisfying $x \equiv 1(\bmod 9), x \equiv 0(\bmod 10)$ and $x \equiv 1(\bmod 11)$.
