CS 280, Prelim 1, October 7, 1999

Show all your work.

- 1. (15 points) Determine which of the following propositions are tautologies
 - a) $(p \to \neg p) \leftrightarrow \neg p$ b) $(p \to \neg q) \leftrightarrow \neg (p \land q)$ c) $((\neg p \land q) \to r) \to ((\neg q \to p) \to r).$
- 2. (15 points)
- a) Establish the logical equivalence of $\neg \forall x (A \rightarrow B)$ and $\exists x (A \land \neg B)$.

b) Show that $\exists x(A(x) \land B(x))$ and $\exists xA(x) \land \exists xB(x)$ are not logically equivalent.

3. (15 points) The composition of functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$. The inverse of h is the function h^{-1} such that $h^{-1} \circ h$ and $h \circ h^{-1}$ are identity functions, i.e. $(h^{-1} \circ h)(a) = a$ and $(h \circ h^{-1})(b) = b$ for all a from the domain of h and all b from the codomain of h.

a) Give an example of f and g such that $f \circ g$ and $g \circ f$ are different

b) Suppose f and g are invertible. Show that $(f \circ g)^{-1}$ equals to $g^{-1} \circ f^{-1}$.

4. (10 points)

a) How many multiplications does the standard row-column algorithm uses to compute the product of an $m \times n$ matrix and an $n \times p$ matrix? Explain why.

b) Suppose you have to find $A \cdot B \cdot C$, were A is a 3×10 matrix, $B - 10 \times 50$ matrix and $C - 50 \times 2$ matrix. Which order should you choose: $(A \cdot B) \cdot C$ or $A \cdot (B \cdot C)$?

5. (15 points) Compute the greatest common divisor (gcd) of 156 and 93. Find integers x and y such that 156x + 93y = gcd(156, 93).

- 6. (10 points)
- a) Find the base 8 expansion of $(123)_{10}$.
- b) Find the binary expansion of $(123)_{10}$

7. (20 points) By the Chinese Remainder Theorem for each integers a, b and $c (0 \le a < 9, 0 \le b < 10 \text{ and } 0 \le c < 11)$ there is a unique nonnegative integer $x < 990 = 9 \cdot 10 \cdot 11$ such that $x \equiv a \pmod{9}, x \equiv b \pmod{10}$ and $x \equiv c \pmod{11}$.

- a) Find such a, b and c for x = 801.
- b) Find a positive integer x satisfying $x \equiv 1 \pmod{9}$, $x \equiv 0 \pmod{10}$ and $x \equiv 1 \pmod{11}$.