
Advanced Unix Tools Lecture 11
CS214 Spring 2003 Wednesday, March 12, 2003

We continue with our description of Perl. Today, we introduce more string operations, focusing on
the all importantregular expression matchingcapabilities. We then discuss how to interact with
files.

1 Regular expressions

(I’ll assume you have all seen basic regular expressions before.) The first way of using regular
expressions in Perl that I’ll discuss is as a test operator. The expression:

string =˜ / regexp /

wherestring is an arbitrary string (or a string variable, of course), andregexpis a regular ex-
pression. The above expression is true if any part of the given string matches the given regular
expression. The following characters appearing in regular expression constrain the matching:

c matches characterc
ˆ matches beginning of string
$ matches end of string
. matches any one character, except newline
? matches zero or one occurence of the previous character
* matches zero or more occurences of the previous character
+ matches one or more occurences of the previous character
\d matches a digit
\w matches a letter, a digit, or undescore

There are more special characters, which you can lookup in the documentation. Any special char-
acter must be escaped with a\ if it is to be matched as that character, instead of interpreted as a
regular expression metacharacter.

By default, matching is case-sensitive. Hence,”foo bar” = /bar/ is true, while”foo BAR” = /bar/
is false. To force matching to be case-insensitive, you can use thei flag, as follows:”foo BAR”
= /bar/i , which is true.

As an generic example, consider the following regular expressions, which matches URLs to HTML
files:

/ˆhttp: \/ \/.+html$/

1

Notice the use of̂ and$ to signify that the URL should occur at the beginning of the string, and
should be the whole string. Also, notice that the/ are escaped, as they otherwise signify the end of
the regular expression.

One aspect of Perl regular expressions is they allow you, as a side-effect of matching ,to extract
pieces of the string that matched parts of the regular expression. If you use grouping in your
regular expression, that is, a subexpression of the form(regexp), then whenever that part of the
regular expression is matched, the substring that matched that subexpression will be remembered
by Perl. Consider the URL example above, but this time, as a side-effect of matching, we would
like to get our hands on the actual path to the HTML file (along with the host name). Add the
appropriate grouping in the regular expression:

/ˆhttp: \/ \/(.+html)$/

If you successfully match this expression with a string, then the part of the string that matches
.+html will be saved in the special variable$1, as the following shows:

$test = "http://www.cs.cornell.edu/riccardo/index.html";
if ($test = /ˆhttp: \/ \/(.+html)$/) {

print "The path is $1 \n";
}

What happens if there are more than one grouping in the regular expression? The substring match-
ing each grouping is put in variables$1, $2, ... in left-to-right order of left-parentheses. Hence,
”abcdefghi” = /(..(..).).(..)/ will put abcdein variable$1, cd in variable$2, andgh in variable$3.

A second way of using regular expressions in Perl is as a replacement command. The command:

string-variable =˜ s/ regexp / string /;

takes the content of the string variable, finds the first substring in that string that matches the
regular expression, and replaces it with the givenstring, updating the value of the variable with the
resulting string. Hence,

$test = "some foo and another foo";
$test = s/foo/bar;
print "$test \n";

The variable$test is updated with the result of replacing the first occurence offoo by bar. To
replace all occurences offoo, you can use the flagg, as in$test = s/foo/bar/g. Notice that in the

2

replacement stringstring, you can use the variable$1, $2, ... that have been set by the matching
of the regular expression. As an example, consider the following example, which takes a string of
the formLast name, First name, and switches the first and last name:

$test = "Doe, John";
$test = s/(\+), (\+)/$2 $1/;
print "$test \n";

File handles

Until now, the only way our Perl scripts can communicate with the outside world is by writing to
standard output. Let’s remedy that. All input and ouput in Perl is done viahandles. There are
two predefined handles, corresponding to standard input and standard output, appropriately named
STDINandSTDOUT. We have already been usingSTDOUT, as it turns out thatprint expr,expr,...
is just an abbreviation forprint STDOUT expr,expr,.... This last form makes explicit what handle
to send the output to.

How do you useSTDIN? The basic way to perform input is to use the expression<handle>, which
reads one line from the specified handle. Hence,<STDIN> will read one line from standard input.
The following excerpt will read two lines from standard input and print the first:

$first = <STDIN>;
$second = <STDIN>;
print "$first \";

To read or write to files, you need to create an appropriate handle to the file. Let’s consider input
first. To create a handle to read from a filefoo.txt, use the command:

open (NEWIN, "foo.txt");

This command creates a new handleNEWIN (you can choose whichever name you want) to read
from file foo.txt. To read from the handle, simply use<NEWIN>. It is a good idea to close a
handle when you’re done using it, as follows:

close (NEWIN);

One can also read not from a file, but from the output of executing a shell command. For instance,
assume that instead of wanting to read fromfoo.txt, you wanted to read from a sortedfoo.txt. You
can use:

3

open (ANOTHERIN, "cat foo.txt | sort |");

The expression is meant to remind you of a pipe, which in a sense it is.

To write to a file, you need to create an output handle. To create a handle to write to filefoo.txt,
you first need to decide whether you want to overwrite an existingfoo.txt, or whether you want to
append to an existingfoo.txt(if it doesn’t exist, it will be created). To overwrite, you use:

open (NEWOUT, ">foo.txt");

and to append, you use:

open (ANOTHEROUT, ">>foo.txt");

To write to a given handle, you use the full form of theprint command, which takes an output
handle as an argument:

print NEWOUT "this should be sent to foo.txt ", "and this too."

Note thatopenactually returns a result;openis true if the open operation was successful, and falso
otherwise. Hence, you can catch errors, via, say:

if (! open (NEWIN,"foo.txt")) {
print "ERROR! \";
exit (1);

}

4

