
Advanced Unix Tools Lecture 9
CS214 Spring 2002 Friday, March 8, 2002

As you have noticed in the examples of makefiles I have been giving in class, many rules are
essentially the same except for the name of the target and dependencies. For instance, to compile
a C file, a rule typically looks like:

file.o : file.c
gcc -c file.c

(potentially with additional flags, or with the use of variables to abstract away from the compiler,
etc.) If there are many C files part of the project, each will have a rule of the above form. What
you would like, of course, is a way to say something like: for every target with a.o extension,
it depends on the corresponding file with.c extension, and to build it, you invoke such and such.
That’s what static pattern rules are for. A static pattern rule has the following form:

targets : patterntarget : patterndep dep ...
cmd
cmd
...

Intuitively, such a rule says: for all the targetstargets, if it matchespatterntarget, then it depends on
patterndepand possiblydepand other fixed dependencies, and to build it you execute the following
commands.

A typical static pattern rule for compiling a C file would look like:

objects = file1.o file2.o file3.o

$(objects) : %.o : %.c
gcc -c $<

The pattern for the target,%.o, contains a% which intuitively matches any number of characters.
If the target isfoo.o, then% matchesfoo. Whatever matched%, called thestem, is substituted in
the pattern for the dependency to establish the dependencies for that particular pattern. Hence, the
above rule is equivalent to rules for compilingfile1.odepending onfile1.c, file2.odepending on
file2.c, andfile3.odepending onfile3.c. The command uses a special makefile variable$<, which
is automatically expanded bymakeinside a command line into the first dependency file. In the case
above, it will be expanded into eitherfile1.c, file2.c, or file3.c, depending on the actual dependency

1

file, which depends on the actual target. There are a few such special variables that you can use in
command lines in rules; here’s a partial list:

$@ current target
$< first dependency file
$ˆ all dependency files
$* stem
$? all dependency files that are newer than target

2

