
Advanced Unix Tools Lecture 8
CS214 Spring 2002 Wednesday, March 6, 2002

Variables

Makefiles allow you to use variables, which are reminiscent of shell variables. A variable declara-
tion can occur anywhere in a makefile, and is of the following form:

name = value

The value assigned to a variable extends to the end of the line, and may be a sequence of words.
For example, the following variable declaration occurs often in makefiles used to compile C code:

objects = file1.o file2.o file3.o

To use a variable, you prepend$ to the variable name in parentheses. The variable gets expanded
by makeprior to interpreting the makefile. For instance, if we assume the variableobjectsas
defined above, we can imagine the rule:

myapp : $(objects)
gcc -o myapp $(objects)

Other variables often occuring in makefiles include variables to hold program options, if they need
to be changed as a whole. For example, compilation flags are often put in a variable, so that it
is easy to recompile an application with debugging information by simply adding the appropriate
command-line options to the variable instead of changing all the occurences of the compiler. An-
other typical use of variables is to abstract away from the name of commands to use. For example,
a compilation makefile may contain rules such as:

file.o : file.c
$(GCC) $(CFLAGS) -c file.c

where the variableGCCcontains the name of the compiler to use,gcc, orcc, andCFLAGScontains
the appropriate flags for that compiler.

A very interesting aspect ofmakeis that it automatically defines a variable for every environment
variable that exists. Hence, a makefile can refer to environment variables. Of course, you can
override environment variables by simply declaring a makefile variable with the same name.

1



Phony targets

I haven’t talked a lot about targets. In my discussions, I have assumed that there was an implicit
final targetin the makefile, for example corresponding to the compiled application in a compilation
makefile. Time to be a bit more precise. When invokingmake, you can specify what target to build:

make target

This will rebuild target if it needs to be updated according to the rules of the makefile. By default,
if no target is specified, the target of the first rule of the makefile is assumed (which is what was
happening until now).

Being able to specify a target when callingmakeenables the use ofphony targetsto do special
maintenance jobs. For example, a phony target that often occurs in compilation makefiles is a
target that cleans up the directory by removing the intermediary object files.

clean :
rm -f $(objects)

(We use the variableobjectsto hold the names of the object files.) If a file namedcleandoes not
occur in the directory, then doing amake cleanwill automatically trigger this rule, since a rule is
always triggered when its target does not exist. This will have the effect of removing all object
files from the directory.

(To enforce tomakethat the targetcleanis not meant to correspond to a file in the directory, you
can use a special declaration. The declaration

.PHONY : target target ...

declares that the given targets are phony targets not corresponding to any files. This helpsmake
not get confused if files of the same name occur in the directory.)

A trick: if a phony target depends on other phony targets, those targets are invoked as “subroutines”
of the target, that is, they are triggered themselves before the commands of the target are executed.
In general, it is a bad idea to have a real target depend on a phony target, as it will force the
triggering of the rule corresponding to the real target.

2


