
Advanced Unix Tools Lecture 7
CS214 Spring 2002 Monday, March 4, 2002

In the next three lectures, we will cover a tool that is used to manage the construction of files
from other files. The most common example of this phenomenon is the process of compilation
for programming languages: you have a set of source files, you want to compile each of them into
object files, and finally you want to link those object files together, possibly with some library files,
into an executable program.

The tool, calledmake, reads in a file containing a description of the dependencies between the
files, and commands describing how to construct target files from dependent files. Themaketool
then automatically figures out the best way to construct the new files. Among other things, if some
of the target files already exist and are still valid (that is, if there has been no modification to the
dependent files), then these files don’t need to be rebuilt.

Unfortunately,makesuffers from the same problems as shells: there are many versions out there,
all slightly incompatible. For the sake of discussion, we will concentrate on the GNU version of
make, available onbabbageas /usr/local/gnu/bin/make. Much of what you will learn this week
applies to othermaketools, but some of the features or the syntax may be slightly different.

A sample makefile

The files thatmakereads and that contain the dependencies between files are called makefiles, and
one typically stores the under the namemakefile. Here is a sample makefile:

myapp : file1.o file2.o
gcc -o myapp file1.o file2.o

file1.o : file1.c macros.h
gcc -c file1.c

file2.o : file2.c macros.h
gcc -c file2.c

This makefile describes the dependencies requires to compile the C source filesfile1.c, file2.c(and
header filemacros.h) into the executable calledmyapp. This makefile contains three rules, each
rule describing a particular dependency. A rule is of the form:

target : dep dep dep

1



cmd
...
cmd

Such a rule states that to build the filetarget, you first check iftarget does not exist, or if it is
older than any of the dependency filesdep. (Here, older is taken to with respect to the time of last
modification, not the time of creation.) If any of these conditions hold, then the filetargetneeds to
be rebuild. To rebuild it, the commands specified after the rule are executed. It is very important
to note that each line containing a command must start with a TAB character (i.e. press TAB at
the beginning of the line). If this is not the case, you’ll either get an error, or at best unpredictable
behavior.

Consider the previous example. It states that you need to rebuild the filemyappif either it does not
exist or if it’s older than eitherfile1.oor file2.o. To rebuildmyapp, you invokegcc, the C compiler,
with the appropriate flags. Similarly for rebuildingfile1.oandfile2.ofrom file1.candfile2.c.

To “execute” such a makefile, you simply callmakein the directory of the makefile. If the makefile
is indeed calledmakefile(or Makefile), makewill automatically find it and figure out if there are
any files that need to be rebuild and if so rebuilds them. If the makefile is stored under another
name, you can still usemake, with an option:make -f makefilename.

2


