
Advanced Unix Tools Lecture 6
CS214 Spring 2002 Friday, March 1, 2002

Functions

A feature ofbash is that it allows you to definefunctionswithin scripts. (In fact it allows you
to define functions on the command line as well, but we’ll only look at functions for scripting
purposes.) A function is simply like a named script within a script.

A function declaration is as follows:

function name () {
cmd
...
cmd

}

For example, consider the following function declaration, that defines a functionlsn that reports
the name of the current directory before reporting its content:

function lsn () {
echo "$(pwd)"
ls

}

Invoking a function is done just like you invoke other commands. Functions can be redirected just
like other commands, so thatlsn> f will send the output of executinglsn to the filef.

Functions are also like commands in that they return an exit code. By default, the exit code is 0. If
you want to return a different exit code, you callreturn n in the function. This will terminate the
function execution and return an exit code ofn. (Note that if you useexit n in a function, you’ll
actually get out of the script that is executing the function, which may or may not be what you
want.) Functions returning exit codes mean that you can use functions as controlling commands in
conditionals and loops.

Functions can also be recursive, i.e., they can invoke themselves. This is useful when doing for
example recursive walks over directory structures (what you did in Homework 1, for instance).
As with all recursive functions, you need to make sure that you do not end up with an infinitely

1

loop. Everything that you have ever learned (and will ever learn) about recursion in programming
languages applies here.

A function has access to all the variables defined by the script. It can access them, and change
them. Moreover, variables defined by the function are also available to the script. Consider the
following simple example:

function test () {
foo=after
bar=new

}

foo=before
test
echo "$foo $bar"

If you run this script, you get an output ofafter new, showing that the functiontestchanged the
value offoo, and also that the variablebar is available after the function executes.

To prevent this kind of behavior, a function can declare a variable as local. A local variable does
not survive the invocation of the function. Moreover, if a variable of the same name is used in
the script, that variable is not affected by changes to the local variable of the same name. Hence,
local variables behave like local variables in standard programming languages. A variablefoo is
declared local by using the expressionlocal foo. Hence:

function test () {
local foo
local bar
foo=after
bar=new

}

foo=before
test
echo "$foo $bar"

will output before, showing that the script variablefoo was unaffected by the update of the local
foo in test, and moreover that the local variablebar did not survive past the invocation oftest.

Something interesting happens when one function invokes another. The invoked function has
access to all the local variables of the invoking function. This can lead to surprising behavior,
and is typically very hard to debug. To see why, notice that if a functionf accesses a non-local

2

variablefoo, determining what variablefoogets updated depends on who exactly is invokingf. (If
you’re curious, this means that shell script functions use dynamic scope to manage variable access.
Most programming languages you are used to, i.e. C, Java, SML, use lexical scope.)

Finally, since functions behave as commands, they can take arguments. The arguments to a func-
tion are passed in the standard argument variables$1, $2, etc. These argument variables are con-
sidered local to the function, and hence they will not overwrite the the argument variables of the
script itself (or any other function for that matter). Note that all the argument variables are reset in
this way when a function is called, not just those corresponding to actual arguments. Hence, if a
function is called with two arguments,$1 and$2 inside the function will refer to those arguments,
while $3 and above will be null. The argument variable$# containing the argument count is also
updaet. Consider the following example:

function test () {
echo "first arg of function: $1"
echo "second arg of function: $2"

}

echo "first arg of script (before): $1"
echo "second arg of script (before): $2:
test some arg
echo "first arg of script (after): $1"
echo "second arg of script (after): $2:

If this is part of script invoked with argumentsoneandtwo, we get the following outputs:

first arg of script (before): one
second arg of script (before): two
first arg of function: some
second arg of function: arg
first arg of script (after): one
second arg of script (after): two

A final word about how the shell executes commands. If a command to be executed contains a
slash, the file system is used to find the command. If the command does not contain a slash (i.e.
it’s just a command name), then the shell first checks if a function of that name exists, and if so
executes it. If none exists, it checks if it’s a builtin command (such ascd, or echo), and if so
executes. If it’s not a builtin, then the directories in thePATH environment variables are scanned
to find an executable with that name.

3

