
Advanced Unix Tools Lecture 5
CS214 Spring 2002 Wednesday, February 27, 2002

A few more notes about loops, as we saw them last time. Two builtin are available to somewhat
control a loop. The commandbreakgets you out of the current loop. If it is used with a parameter,
break nbreaks you out of then-th enclosing loop. Ifn is greater than the number of enclosing
loops, you break out of all the loops. Alternatively, the commandcontinueaborts the current
iteration of the current loop, and attempts the next iteration. Again, if it is used with a parameter,
continue nattempts the next iteration of then-th enclosing loop. Ifn is greater than the number of
enclosing loops, the last enclosing loop is resumed.

Case statement

Thecasestatement is sometimes a nice alternative to conditionals, as it allows for some amount of
pattern matching.

case word in
patt | ... | patt)

cmd
cmd
;;

patt | ... | patt)
cmd
cmd
;;

esac

First, the argumentword is expanded according to the shell rules. Then, the system goes through
each clause and sees ifword matches one of the patterns in the clause. (Patterns in a clause are
separated by|.) A pattern uses the same special symbols as pathname expansion (* , ?, [...] , ...).
For example, bothunix and linux match the pattern*n?x. The first time a match is found, the
corresponding commands are executed. A typical example of use ofcaseis to conditionally set
variables depending, say, on the operating system you are running. To get a hold of the operating
system, you can either refer to thebashenvironment variableOSTYPE, or use the unix command
uname. Let’s use the latter. The commandunamereturns information about the system you are
currently running. Command-line options controls the exact information returned. What we want
is uname -s, which returns the name of the operating system:

1

case ‘‘$(uname -s)’’ in
in

?inux)
echo "You’re running linux..."
opsystem=’’LINUX’’
;;

Sun*)
echo "You’re running SunOS..."
opsystem=’’SUNOS’’
;;

*)
echo "Unrecognized operating system..."
exit 1
;;

esac

Notice the use of the pattern* as a catch-all default case.

Arithmetic expressions

Thebashshell allows some amount of arithmetic expressions to be evaluated directly. Two forms
are used. The first is a substitution form. The shell will expand the form$((expr))by evaluating the
arithmetic expressionexprand substituting the result. Arithmetic is performed using long integers,
without checks for overflow. Division by zero is reported as an error. Note thatexpr is treated as
though it were inside double-quotes; hence, variable substitution can occur, but not matching.

Operations are reminiscent of C operations. Logical values for integers is as in C: true is zero, false
is non-zero. These operations are listed in the decreasing order of precedence:

- + unary minus, plus
! ∼ logical, bitwise negation
** exponentiation
* / % multiplication, division, remainder
+ - addition, subtraction
<< >> bitwise shifts
<= >= < > comparisons
== != equality, inequality
& bitwise AND

2

ˆ bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
expr?expr:expr conditional evaluation
= *= /= %= += -= assignment

Parentheses can be used to affect the order of operations, as usual. If you use an identifier such as
foo in the arithmetic expression, the value of the corresponding shell variable is used. The value is
coerced into an integer. If the value does not correspond to an integer, 0 is used.

Consider the following simple examples:

$ echo $((1 + 1))
2
$ foo=10
$ echo $((foo))
10
$ echo $((foo * 2))
20
$ echo $((foo = 40))
40
$ echo $foo
40

Notice the use of assignment inecho$((foo = 40)). The variablefoo is assigned value 40, which has
the side-effect of changing the value of the shell variablefoo to 40. Hence, arithmetic evaluation
can affect the value of shell variables, which can be quite useful.

Note that variable substitution occurs in$((...)) before arithmetic evaluation (refer to lecture 2).
A priori, there is no difference between$((foo + 20)) and$(($foo + 20)), except that in the latter
case, the shell performs variable substitution before performing the arithmetic evalation, so that if
foohas value 10, then the shell will in fact evaluate$((10 + 20)), never seeing that 10 came from a
shell variable. This can lead to some pretty interesting effects. If you write$(($foo = 20)), you can
put the name of a variable to update infoo, and variable substitution will plug it in the arithmetic
expression before evaluating it. So you can parametrize an expression by the variables it updates.
For instance:

$ a=10
$ b=20
$ c=30
$ foo=a
$ echo $(($foo=5))

3

5
$ echo $a
5
$ echo $b
20
$ echo $c
30

An alternative form exists, typically used to assign the result of evaluating expressions to variables.
The shell commandlet simply evaluates its arguments as arithmetic expressions. Since no substi-
tution occurs, the only way for this to be useful is for its side-effects, i.e., the assignment of values
to variables. For example:

$ a=10
$ let ’c=a*2+a*3’
$ echo $c
50

If you have more complicated arithmetic to perform, say, with floating point numbers, then you
can revert to an external command. The commandbc implements a fairly complete calculator,
evaluating expressions fromstdinand returning the results tostdout. (Although some amount of
care is needed to catch errors, etc.) Invokingbc -l will provide access to the full standard math
library. For instance, to compute the sine of 3.4 and assigning it to shell variableresult, you can
use:

$ result=$(echo ’s (3.4)’ | bc -l)
$ echo $result
-.25554110202683131924

4

