
Advanced Unix Tools Lecture 4
CS214 Spring 2002 Monday, February 25, 2002

Conditionals

Conditional statement allow you to execute commands based on the exit code (success or failure)
of other commands. The basic form of the conditional is:

if cmd1
then

cmd
cmd

fi

The interpretation is simple:cmd1is first executed, and if it succeeds (if its exit code is 0), the
commands betweenthenandfi are executed. Otherwise, execution continues afterfi. A form of
the conditional with anelseclause is available:

if cmd1
then

cmd
cmd

else
cmd
cmd

fi

as well as a form with multiple sequential tests:

it cmd1
then

cmd
cmd

elif cmd2
then

cmd
cmd

1

elif cmd3
then
...
else

cmd
cmd

fi

The interpretation of those forms should be straightforward.

It is sometimes useful to have an empty branch in anif statement. The command: is a no-op
command. Hence,

if cmd1
then

:
else

cmd
cmd

fi

does nothing ifcmd1succeeds, and executes the commands in theelsebranch otherwise.

Sometimes you will want to have a look at an exit code, for example, when yourif does not
behave the way you want. The variable$? holds the exit code of the last command executed, in
human-readable form.

While loops

While loops allow you to execute commands until essentially a given condition is met. The basic
form of the statement is:

while cmd1
do

cmd
cmd

done

The interpretation is as follows. First,cmd1is executed. If it succeeds, the commands in the body
of the loop (betweendo anddone) are executed. Then,cmd1is executed again, and if it succeeds,
the body of the loop is executed again, and so on untilcmd1fails.

2

An alternate form allows you to loop until a given condition is met:

until cmd1
do

cmd
cmd

done

The interpretation is as in thewhilecase, except that the body is executed as long ascmd1fails.

Tests

Although any command can be used to branch in conditional statements, or to control the looping
in while loops, a special command is very useful to perform certain tests.

The command[testexpr] is a built-in command that performs a test specified bytestexpr. If the
test is true, then[testexpr] returns an exit code of 0 (i.e., it succeeds), otherwise it fails. This
command is therefore useful to control conditionals and loops. Note that variable substitution and
word splitting are performed ontestexpr, but matching is not performed.

There are many possibilities fortestexpr, and we will not describe them all. Refer to thebashman
pages for a full description. We will describe the most commonly used here.

Testing expressions for strings include the following:

str1 = str2 tests ifstr1andstr2are equal
str1 != str2 tests ifstr1andstr2are not equal
str tests ifstr is non-null

Typically, these tests are used in conjunction with variables, for example, to test if a given variable
has a given value. Here, one is often bitten by word splitting. Consider what happens if you attempt
to test whether variablefoohas valueJohn. If you try [$foo = John], you will get a problem iffoo
is either undefined or has a null value. Recall that the shell expands the command line, performing
substitutions and such. Iffoo has a null value, then after substitution, the shell will attempt to
evaluate[= John] , which will give you a syntax error. What you want is the shell to still consider
for something to be there even if the variable was null-valued. It turns out you can use the form
”” to represent an explicit null string (i.e. it’s a null string, but the shell sees it as such). Since the
shell will perform variable substitution under double-quotes, you can therefore write[” $foo” =
John] to test the variablefoo. If foo is null, then this will expand to[”” = John] , which is false.
In general, it is good policy to put variables under double-quotes in tests.

A fair number of testing expressions exist for testing strings. Representatives include:

3

-e path tests ifpathexists
-d path tests thatpathexists and is in fact a directory
-f path tests thatpathexists and is not a directory
-r path tests whether you have read permissions topath
-w path tests whether you have write permissions topath
-x path tests whether you have execute permissions topath

Boolean combinations of test expressions are allowed:

(testexpr) teststestexpr(useful to group conditions)
testexpr1 -a testexpr2 true iff bothtestexpr1andtestexpr2are true
testexpr1 -o testexpr2 true iff eithertestexpr1or testexpr2is true
! testexpr true iff testexpris false

Here’s an example of testing in loops. It also serves to introduce an interesting builtinbashcom-
mand. The commandread is used to read input from the user, something that may be useful in
a shell script. The commandread varwill read a line of input from the user, and put the line in
variablevar. If more than one variable is supplied, i.e.,read var1 var2 var3, then the first word of
the line input from the user is put invar1, the second invar2, and the rest of the line is put invar3.
A prompt may be supplied by using a-p option, as inread -p ’some test’ var(notice the quotes to
give a prompt which may contain spaces...) The following lines will repeatedly query the user for
ayesor nountil he gets it right:

read -p "yes or no? " answer
while ["$answer" != "yes" -a "$answer" != "no"]
do

echo "Please enter yes or no"
read -p "yes or no? " answer

done
echo "the answer was $answer"

I should note thatbashhas an alternate more modern form of testing, written[[testexpr]], that
does not perform word splitting (and hence solving the messy null-variable problem), and allowing
patttern matching. We will not cover this form here, but I will refer you to the man pages.

For loops

A final form of looping is available, that does not rely on exit codes. Thefor statement has the
form:

for var in word1 word2 ... wordn

4

do
cmd
cmd

done

The interpretation is as follows. The variablevar is assigned the first wordword1 in the list, and
the commands betweendo anddoneare executed. Then, the variablevar gets the second word in
the list, and the commands are executed. So on until all the words in the list have been processed.

Consider a simple example, to mail a fileletter to a list of people:

for name in alice bob trudy
do

mail $name < letter
echo "letter mailed to $name"

done

Of course, the list of words can be generated by substitution, as in:

names="alice bob"
junk="abc"
morenames="oscar trudy"
for name in $names $junk $morenames
do

echo -n "Processing $name: "
if finger $name@cornell.edu | grep ’no matches’ > /dev/null
then

echo "match not found"
else

echo "match found"
fi

done

Some things to notice in the above example. First, after substitution in thefor loop, the list of
words contains five words. Second, the option-n to echosuppresses the newline that gets added at
the end of what’s printed. Third, recall thatgrepreturns an exit code of0 if a match is found, and
an error code of1 if no match is found (and no error occurred). Finally, the redirection to/dev/null
is used to suppress output bygrep, which by defaults sends the matching lines tostdout. (/dev/null
is the so-called Unix bit-bucket; it is a black holes that just swallows input.)

5

