
Advanced Unix Tools Lecture 2
CS214 Spring 2002 Wednesday, February 20, 2002

Bashhas many features that makes it an attractive interactive environment. We will not talk about
those in this course. Rather, we will dive into the scripting aspects. In this lecture, we will quickly
go over the basics ofbashthat will be relevant when we discuss scripting, things like handling exit
codes, metacharacters, variables, quoting, and so on.

Commands

Recall that every command1 returns an exit code to its parent process (the process that invoked it
in the first place, typically the shell), a number between 0 and 255. A value of 0 indicates success
(however success is defined for the command at hand), while a value greater than 0 represents
failure. Every command may define its own meaning for the failure code (i.e., what does it mean
when it returns 1, or 2, or 3). Some error codes are reserved forbash. For example, if a command
returns an exit code of 127, it means that in factbashwas not able to execute the command because
it couldn’t find it, maybe because of an error in syntax. Similarly, exit codes greater than 127
indicate that the command was interrupted due to the arrival of a signal. (We will not cover signals
in this course.)

Commands can be composed in different ways on the command line. The formcmd1 ; cmd2
executescmd1 and thencmd2. The exit code returned is the exit code ofcmd2. The form
{ cmd1 ; cmd2 ;} (the trailing ; is required) is similar to the previous case, except that this form
allows redirection to apply to all commands in the list at once. The form(cmd1 ; cmd2)is similar
to the previous case, except that the commands are executed in a subshell. Finally, conditional
execution is expressed in two different ways. The formcmd1 && cmd2executescmd1, and if it
succeeds (i.e., it returns exit code 0), then executescmd2. Alternatively,cmd1|| cmd2executes
cmd1, and if it fails (i.e. returns exit code> 0), then executescmd2.

Shell expansions

The shell performs quite a bit of work on any command line it executes, whether it is typed at the
prompt or read from a script. The following steps are performed in order, and I will describe most
of them in the remainder of the lecture.

1I will use the term “command” to stand for either commands builtin to the shell, programs executed from the
filesystem, aliases, etc.

1

1. brace expansion

2. tilde expansion

3. parameter expansion

4. variable substitution

5. command substitution

6. arithmetic substitution

7. word splitting

8. pathname expansion

For sake of discussion, we will call a sequence of characters separated by spaces a word.

Brace expansion is the process of expanding every word containing a brace expression, of the form
{w1,w2,w2}, where eachw1, w2, w3 are words (without any space), into a sequence of words
where the brace expression is replaced byw1, w2, w3, respectively. For example,abc{de,fg,hi}
expands into the sequence of wordsabcde abcfg abchi.

Tilde expansion expands every∼ into the path to your home directory. The form∼nameexpands
into the path to the home directory of username.

Variable substitution and parameter expansion substitute the value of variables. Variable substitu-
tion replaces every expression$var by the value of variablevar. Parameter expansion is a kind of
conditional substitution. There are many variations of parameter expansion. The most common
one is to replace every expression of the form${var:-word} either by the value of variablevar if
var is set and non-null, or byword if var does not exist, or is null-valued.

Command substitution replaces every expression of the form$(cmd), wherecmd is a command,
by the output of the execution ofcmd. Hence,$(pwd) is replaced by the output ofpwd, that is, the
current working directory.

Arithmetic substitution allows you to perform numerical computations in the shell, instead of using
a program such asbc. We will return to arithmetic expressions in later lectures.

Word splitting is the process of actually splitting the command line into words. Hence, if a sub-
stitution occuring earlier in the process substitutes a string with whitespace, for example,$FOO
where variableFOOhas valuesome word, then the value will be split into words.

Finally, pathname expansion is the process of replacing paths containing wildcard characters (such
as* and?) by the sequence of paths that match the pattern. Recall that* matches one of more
character,? matches exactly one character,[abc] matches any character between the brackets

2

(here,a, b, c), and[!abc] matches any character not in the brackets. (This process is also known
as globbing.)

Sometimes, we want to disable some aspects of this automatic expansion by the shell. By and
large, this process is known as quoting. Quoting can take many forms. The simplest form is
simply to escape the special characters that have meaning to the shell. For instance, you may want
to use the$ character without having it interpreted as variable, parameter or command substitution.
Similarly for the& , ;, ?, * , [,] , {, } characters. To use such a special character as a literal character,
you precede it with a backslash. (This is called escaping a character.) Since a backslash is itself a
special character, if you want a literal backslash, you need to escape it as well.

Two alternate forms of quoting exist. The form’text’ disables any form of expansion between the
single quotes, including word splitting. Hence, a linecmd ’word1 word2’will split the line into
cmdandword1 word2. The form”text” disables expansion between the double quotes, except for
variable and command substitution. Hence,”* $foo” will expand to*bar if variable foo has value
bar. As with single quotes, double quotes also disables word splitting.

Redirection

Recall that redirection allows you to redirect the input to a command from a file (using<), or the
output to a file (using>,>>, depending on whether we want to overwrite the file or append to it).
A special form of redirection is useful, called a “here document”. It allows you to redirect input
not from a file but from explictly provided data. The general form of this form of redirection is as
follows:

cmd << FLAG
line1
line2
line3
line4
FLAG

This executescmd, feeding itline1, line2, line3 andline4 as input. TheFLAG after<< indicates
until where to read the input; the first line containingFLAGby itself is the end of the input to feed
to the command. The terminating expression need not beFLAG. It can be anything. Generally, it
will be something that does not appear in the text to feed to the command. Note that expansion is
performed on the lines to pass to the command. Expansion isnot performed onFLAG.

Here’s a concrete example, to mail a piece of text tojoe:

mail -s "value of path var" joe << XYZ

3

Joe, here’s the value of my
PATH variable: $PATH
XYZ

4

