
Advanced Unix Tools Lecture 10
CS214 Spring 2002 Monday, March 11, 2002

Perl, the ”Practical Extraction and Report Language”, is a scripting language with powerful text-
manipulation capabilities. Because of these, Perl has become a very popular language in the con-
text of web servers. As you have seen doing homeworks 1 and 3, creating web pages involves
hacking HTML, which is just a textual representation.

This week, we will cover the basics of Perl programming. We will be using Perl 5.6, /usr/local/bin/perl
on babbage, although I doubt that we will ever talk about features specific to 5.6.

We will use Perl to write scripts, in a way similar to the way we have been writing shell scripts. We
will store Perl scripts in text files with extension.pl, which is the conventional extension. There are
two ways of executing a Perl script. The first is simply to invoke the Perl interpreterperl with the
script to execute as an argument, e.g.,perl foo.pl. The second way is to use the “magic number”
approach. Recall that when Unix is instructed to execute a file and that file starts with the two
special characters#!, it uses the remainder of the first line as an indication of what program to use
to execute the file. In the case of shell scripts, we had scripts begin with#! /bin/bashto indicate
thatbashwas to be invoked to execute the script. In our case, we can put#! /usr/local/bin/perlas
the first line of our scripts, and set execute permissions on the script, and Unix will automatically
invokeperl to execute the script.

Basics of Perl

A Perl script is a sequence of statements. There are a few forms of statements, most of which
we will cover in the remainder of this lecture. Let me first note that Perl programming is not
shell programming. Whereas shell programming involves putting together shell commands, Perl
is a different language. Although they are syntactical similarities, you cannot directly use shell
commands in Perl scripts.

Comments can be put anywhere in a Perl script. A comment starts with the character#. Anything
on a line after a# is ignored by the Perl interpreter.

Perl recognizes two different types of values: integers and strings.1 Integer literals are written as
one expects,1, 2, -1, A string is a sequence of characters. String literals can be written in two
distinct ways. A string’this is a string’ written using single-quotes is taken to mean the sequence
of characters appearing as is between the single-quotes. A string”this is also a string” written
using double-quotes is taken to mean the sequence of characters obtained after interpreting what’s

1In fact, Perl 5.0 introduced a new type, objects, but we will not cover those in this course.

1

between the double-quotes. For most characters, interpretation doesn’t affect anything. Hence,
”this is also a string” represents the same string as’this is also a string’. We will see in a little
while some examples on which single-quotes and double-quotes differ.

Perl allows the use of variables. A (scalar) variable can contains strings or integers. All scalar
variables in Perl are required to start with the$ characters. An assignment statement is used to
assign value to variables. For example,

$i = 10;
$word = ’hello’;

Notice that statements are always terminated with a semicolon;. Also, notice that$ is part of the
variable name, and hence must be used even when assigning to a variable. (This is different than
the use of variables in the shell, a frequent beginner’s problem.) One of the difference between
single-quotes and double-quotes for defining strings is how to handle variables appearing in the
string being defined. Compare the following definitions:

$test1 = ’this is the value of variable i: $i’;
$test2 = "this is the value of variable i: $i";

Since$test1is defined as a literal string, all the characters between the single-quotes are part of the
string. However,$test2is interpreted, which among other things means that variables appearing
inside the string are replaced by their value. Hence, the$i in $test2is replaced by10, so that the
string stored in$test2is in fact the stringthis is the value of variable i: 10.

Variable assignment is our first example of statement. A statement that comes in handy isprint
that simply prints values to standard output. In fact,print is an example of a built-in function. Perl
has many built-in functions, and we will describe some of them as we encounter them in examples.
The basic form ofprint is:

print expr , expr ,..., expr ;

whereexprs can be integers or strings, or in general any expression yielding such. (We will define
useful operations to build expressions shortly.) The values printed are printed without spaces in
between them. Also,print does not put newlines after printing. If you want a newline, you need
to explicitely use” \n” . (Notice the double-quotes; if you use single-quotes’\n’, then you simply
output the characters\ followed byn; you want to interpret it as a newline, requiring you to use
double-quotes.) Here are some examples:

$i = 42;
print "Hello, \n";

2

print "This is the value ";
print "of integer variable i:", $i, " \n";

Executing the above script outputs the following to stdout:

Hello,
This is the value of integer variable i: 42

Operations are useful for constructing expressions. Some operations assume that their arguments
are integers, such as+ , -, * , /, and others. If these operations are given arguments that are strings,
Perl will automatically convert those values to integers before applying the operation. If the string
cannot be converted to a meaningful integer, then0 is used. Consider the following example:

$a = "10"; $b = $a + 2; $c = $b + " 34 ";

The variable$c gets final value46. Other operations assume that their arguments are strings. The
basic example of such an operation is. representing string concatenation. Hence,”foo” . ”bar”
yields the string”foobar” . As before, if an argument is not a string, it is converted to a string prior
to application of the operation. This leads to some cute behavior:

$a = 5;
$b = $a + 10;
$c = $b . "200";
$d = $c + 10;

You can check that the variables are assigned the following values:$a gets5, $b gets15, $c gets
15200(!), $d gets15210.

Other operations are used to write comparison expressions. For example, the integer comparions
<, >, <=, >=; the comparison operation== checks that two integer values are equal,!= checks
that they are not. The string comparison operationeqchecks that two strings are equal. Note that
integer equality and string equality behave quite differently. For example,”15” == 15 is true,
since the string”15” is interpreted as the integer15. Similarly, ” 15 ” == ”15” is also true, since
both” 15 ” and”15” are interpreted as the integer15. However,” 15 ” eq ”15” is false, since”
15 ” and”15” are clearly not the same string (one has six characters, the other has only two).

Comparison expressions are useful in conditional and loop statements. A condition statement has
the standard form:

if (comparison expression) {

3

statement ;
...
statement ;

} else {
statement ;
...
statement ;

}

The interpretation is as usual. Note that you can drop theelsebranch. Thewhile loop is also pretty
standard:

while (comparison expression) {
statement ;
...
statement ;

}

There are two flavors offor loops. The first is reminiscent of thefor loop inbash. It allows you to
iterate over a sequence of values:

for variable (value ,..., value) {
statement ;
...
statement ;

}

The variablevariabletakes on the different values specified successively, and the statements in the
body of thefor are executed for each such value. For example, the following loop:

for $i (2,3,5,7,11,13,17,19) {
print "Here’s a prime: $i \n";

}

outputs the predictable

Here’s a prime: 2
Here’s a prime: 3
Here’s a prime: 5
Here’s a prime: 7

4

Here’s a prime: 11
Here’s a prime: 13
Here’s a prime: 17
Here’s a prime: 19

The other variant offor loop is reminiscent of thefor loop found in the programming language C.
It’s syntax is slightly more complex:

for (setup ; condition ; increment) {
statement ;
...
statement ;

}

The idea is simple. First, thesetupexpression is executed, which typically sets up the index
variable to some start value. Then the body of thefor loop is executed, for as long as thecondition
is true. After every iteration, theincrementexpression is executed, which typically increments or
decrement the index variable. For example, the following loop prints all even numbers from0 to
30:

for ($i = 0; $i<=30 ; $i=$i+1) {
print "$i \n";

}

5

