
Advanced Unix Tools Homework 2
CS214 Spring 2002 Due Date: Wednesday , March 6, 2002

This homework looks forbidding, but it’s much easier than it looks. Start early anyways, to make
sure you know what’s going on. You have a few scripts to write, but they all use the same few
ideas.

The point of this assignment is to write a set of scripts to implement NH, a Notes Handler system.
The idea is simply to implement a system that keeps a database of “notes”, and to provide for a
way to classify them and access them. Think computerized Post-It notes.

The notes will be kept in a special directory, that you get to choose. Each note will be stored in its
own file, with a special format: the first line of the file will be the title of the note, the second line
will contain the date and time the note was created, and the remaining lines will hold the actual
content of the note. Notes are stored in files whose names are numbers.

To start off, create a directory in which the notes will be kept. Define an environment variable
NH DATABASEthat points to that directory. Your script will use that environment variable to find
the notes. Do not set that variable in your scripts! (For example, on my system, I will test your
scripts with my own notes database, and I will setNH DATABASEaccordingly.)

For example, I created my notes directory onbabbageat /home/cs214/HW2/nhdir/, so I setN-
H DATABASEto /home/cs214/HW2/nhdir. You can have a look there to see how your notes should
end up looking.

Remember, be creative! You have a lot of tools available:cat, head, tail, ls, grep, sort, and so on.

Part I

In this part, we’ll create the basic scripts that add a note to the database (nnew), list the database
(nscan), and display a given note in the database (nshow). These scripts should work no matter
where they are run from. The notes are kept in a fixed directory, stored inNH DATABASE.
Your scripts should access the notes in that directory. They cannot assume that the notes are
kept in the same directory as the scripts!

nnew

Write a scriptnnewthat creates a new note in the database. If you pass an argument tonnew, that
argument should be taken as the title of the note. If no argument is provided, supply a suitable
default title, such as “Untitled”. The date should be of the form “mm/dd/yy hh:mm:ss”, obtained
by using the unix commanddate.1 The content of the note should be read fromstdin.

1Look at the man page to see how to obtain the above format. It’s not hard. Experiment on the command line.

1



The interesting bit here is figuring out how to name the file that the note will be put in. Recall
that all note files are created in theNH DATABASEdirectory, and they are named using numbers.
The number you should pick for the new file is one more than the largest number already used in
the notes directory. For example, if the directory contains files 1, 3, 5, 8, your new file should be
named 9. Figuring out how to do this is probably the hardest bit of the homework. (Hint: you
need to look at all the files whose names are numbers, and probably sort them to get at the current
highest number; all these operations can be performed by invoking appropriate Unix commands.)

Here’s a sample interaction:

$ ls nhdir/
1 2 3 4
$ nnew ’This is a new note’
Some content
Some more content
$ ls nhdir
1 2 3 4 5
$ cat nhdir/5
This is a new note
02/27/02 21:44:17
Some content
Some more content
$

nscan

Write a scriptnscanthat lists the notes in the database in some nice way. For each note in the
database, you want to output tostdoutthe note number (i.e., its filename), as well as the date and
the title. There should be one line per note. The lines should be output inincreasingorder of note
number. Watch out to make sure that you output 9 before 10 (I’ve messed that up myself in my
first pass at this). Make sure that you do not output a line for files in the notes directory whose
name is not a number! (we’ll be adding files in that directory, we don’t want those to be displayed
as notes.)

Here’s a sample output:

$ ls nhdir/
1 2 3 4 5
$ nscan

1 02/27/02 ORIE seminar
2 02/27/02 AI/NLP seminar
3 02/27/02 cs214 hw2
4 02/27/02 Some url

2



5 02/27/02 This is a new note
$

Notice that I’ve only displayed the “mm/dd/yy” part of the date in my output. Try to get that as
well. If not, no big deal. What you’ve learned implementingnnewwill certainly apply here, when
it comes to getting those filenames that are numbers.

nshow

Allright. So now we have a way to add a note to the database, and to get a list of the notes in
the database. Now, we would like to display a note simply by specifying its number. Write a
scriptnshowthat takes a single argument which must be a number, and displays the content of the
corresponding note. Make sure that the argument is indeed a number, and that there is a note in the
notes directory with that number! (Report an error if not.) For the sake of readability, don’t simply
dump the file tostdout. Highlight the title by prefixing it withTitle: , and prefix the date with
Date: . Add a separation of some sort between the date and the content of the note. The following
interaction may give you a clue what I mean:

$ cat nhdir/5
This is a new note
02/27/02 21:44:17
Some content
Some more content
$ nshow 5
Title: This is a new note
Date: 02/27/02 21:44:17
--------
Some content
Some more content
$ nshow 6
nshow: note 6 does not exit
$

Part II

In Part I, we have developed the basic infrastructure of the notes database: adding notes, listing
notes, displaying notes. We can easily imagine scripts to remove notes, pack notes (for instance, if
you have notes 1,3,5,7,10 in the database, you may want to pack them as 1,2,3,4,5), and so on.

Here, we will focus on a different extension. We will add a capability forcategorization. Essen-
tially, we will define a way to classify notes into categories, based on some charateristics of the

3



notes themselves (for example, words appearing in the note, or something like that). We will then
write a little script likenscan, except that it display all the notes in a certain category.

We will take a very flexible approach to categories. A category is just a string. For the sake of
argument, the categoryurl will be the category of notes containing a URL. Similarly, the category
talk will be the category of notes announcing talks, etc. Note that a note can belong to more than
one category (i.e., if a talk announcement includes a URL!). The way we will implement the
classification is as follows. Write a little script calledcategorizein the notes directory, that takes
a filename as argument (the filename of a note) and returns all the categories that note belongs to,
one category per line. (This script takes a full path to the note file, differently than, saynshow.
The reason why is that the users of NH will never invokecategorizethemselves. So we don’t need
to be nice.) The choice of categories you want to implement is up to you, and reflects what you
care about. When you dream up new categories, or new ways of classifying your notes, you can
simply change thecategorizescript to reflect this. For the sake of testing, we’ll recognize at least
the two categories I’ve talked about earlier. Yourcategorizescript should recognize that a note is in
categoryurl if it contains a URL, that is, if the note has ahttp: or HTTP:anywhere in it. Similarly,
a note will belong to thetalk category if it contains the string*TALK* anywhere in it. Remember,
a note can below to more than one category.

Here’s how my implementation ofcategorizeworks on the sample notes onbabbage:

$ nhdir/categorize nhdir/1
url
talk
$ nhdir/categorize nhdir/4
url
$ nhdir/categorize nhdir/3
$

Hence, note 1 is categorized as being in categoryurl andtalk, while note 4 is in categoryurl. Note
3, in my case, is not recognized as being in any category.

Remember, thecategorizescript goes in the notes directory. It will be invoked by the next script.

nscanc

Write a scriptnscancthat lists the notes in the database in the same way asnscandoes, but only
those notes that belong to all the categories specified as arguments tonscanc. For example,nscanc
url should list those notes that are in theurl category, whilenscanc url talkshould list those notes
that are in both theurl andtalk categories. The output should be in the same format asnscanc(you
can reuse most of the code). Your script should callcategorizein the notes directory to classify the
notes.

Here’s a sample output, given my implementation ofcategorizetested above:

4



$ nscanc url
1 02/27/02 ORIE seminar
2 02/27/02 AI/NLP seminar
4 02/27/02 Some url

$ nscanc talk
1 02/27/02 ORIE seminar
2 02/27/02 AI/NLP seminar

$ nscanc talk url
1 02/27/02 ORIE seminar
2 02/27/02 AI/NLP seminar

$ nscanc talk url foo
$ nscanc
nscanc: need at least one category
$

Notice that there are no notes in categoryfoo, so the correspondingnscancdoes not return anything.
Moreover, an error is reported ifnscancis not supplied with any category. (One can imagine simply
adding categories functionality tonscan. That’s not been done for pedagogical reasons.)

That’s it. Have fun. Submission instructions will be posted to the web site.

5


