
CS 2112 Fall 2024
Final Project

Simulating Evolving Artificial Life
Version of October 29, 2024

The final few programming assignments for this course make up a single project that you will work
on as part of a three- or four-person team. In this project, you will simulate a simple world of animals
(“critters”) that wander around, eat food, reproduce, and evolve. You will build a graphical visualization
that enables a user to take control of individual critters. Different species can also interact in this simulated
world. Because of evolution, there will eventually be multiple species, even if initially there was only one.

Critters move around on a regular hexagonal grid. Critters need energy to survive, because everything
they do requires energy. They gain a little energy from the sun in each time step, as long as they are not
moving. Critters may also attack each other. When critters run out of energy, they die and become food for
other critters. If critters accumulate enough energy, they can reproduce.

The genome of a critter includes a program that determines what the critter does in each time step. The
program consists of one or more rules defining what critters should do under certain conditions. When
critters reproduce, the genome is copied from the parent or parents to the new critter, possibly with some
mutations applied to some rule(s). This means that critter programs may change over time and perhaps
evolve to make them more effective.

Ultimately, the critter simulation will be implemented as a networked Java service with a graphical front
end. This design permits multiple users to view and interact with the same virtual world. In summary, this
project involves developing the following components:

• a simple parser and interpreter for the critter language
• a graphical user interface
• a simulation of the critter world

1 Changes to the spec

The following changes have been made to the project spec since the initial release:

• 10/29: Clarified critter turn order on world creation

2 The world

5

0

3
2

1

4

(0, +2)

(+1, +1)

(-1, -1)

(0, -2)

(+1, -1)

(-1, +1)

(0, 0)

Figure 1: Hexes and directions

column 0
column 1

column 2
column 3

column 4
column 5

row 0
row 1
row 2
row 3
row 4
row 5
row 6
row 7
row 8
row 9

Figure 2: Rows and columns of hexes

CS 2112 Fall 2024 1/10 Final Project

The world that critters live in is a large array of hexagonal tiles called hexes. At any moment, a given
critter is located on one of these hexes and is facing in one of the six possible directions, as shown in Figure 1.
The world advances in discrete time steps. In each time step, a critter may perform one of several possible
actions, or simply update its internal state and wait for the next time step while absorbing solar energy.

Hexes are either rock hexes or hexes that can contain something else. Rocks are inert obstacles that
critters cannot move onto or over. A non-rock hex may be empty or may contain a single critter or some
food, but not both. A hex cannot contain more than one critter.

Food is created on a hex when a critter dies there. Other critters may then eat the food to gain energy.

Hex coordinates Each hex is identified by a coordinate (x, y) where x is the column and y is the row
on which the hex is located. Both x and y are nonnegative integers, and they always sum to an even
number. Figure 2 shows the column and row coordinates of various hexes. The world has a fixed, roughly
rectangular shape that is symmetric with respect to a 180-degree rotation when the width and height have
the same parity. The lower-left (southwest corner) hex is at coordinate (0,0). Moving in one of the six
possible directions changes the row and column coordinate of the critter. The corresponding adjustments
to row and column coordinates are shown in Figure 1.

Some coordinates lie outside the world. A coordinate that lies outside the world acts in all ways as
though it is a rock hex. Critters cannot fall off the edge of the world, and they see rock when they look off
the edge. Figure 2 shows a very small world with WIDTH = 6 and HEIGHT = 10. A coordinate (x, y) where
x ≥ WIDTH lies off the east edge of the world, and a coordinate where y ≥ HEIGHT lies off the north edge of the
world. Assuming hexes are regular hexagons, the world will be roughly square if HEIGHT is about

√
3 times

as large as WIDTH, since the spacing between columns is
√

3 times as large as the spacing between rows.
Given two hexes at (x1, y1) and (x2, y2), the minimum-distance walk along hexes between them has length

max
{
|x2 − x1|,

|x2 − x1 + y2 − y1|

2
,
|x2 − x1 − y2 + y1|

2
}

For those familiar with linear algebra, it is easy in this coordinate system to represent rotations around the
origin, using 2 × 2 matrices:

60◦ clockwise: R =

 1
2

1
2

− 3
2

1
2

 60◦ counterclockwise: L =

 1
2 − 1

2
3
2

1
2

Time The simulation proceeds in time steps. During each time step, every critter is allowed to take one
turn. These turns are taken sequentially, so each critter sees the changes to the state of the world caused
by all critters that have already taken a turn during the current time step. The order in which critters take
turns is fixed. When parsing a world file, the critter turn order is the order the critters are listed in the world
file. Newly created critters over the course of the simulation are added to the end of the ordering. After
each critter has taken its turn, food may be dropped onto the board, as described below. Note that nothing
happens to the state of the world between time steps.

3 Critter actions

The allowed actions are the following:

• Wait. The critter waits until the next turn without doing anything except absorbing solar energy.
• Move forward or backward. A critter uses some energy to move forward to the hex in front of it or

backward to the hex behind it. If it attempts to move and there is a critter, food, or a rock in the destination
hex, the move fails but still takes energy.

• Turn. It may rotate 60 degrees right or left. This takes little energy.
• Eat. The critter may eat some of the food that might be available on the hex ahead of it, gaining the same

amount of energy as the food it consumes. It eats as much as it can; when the hex has more food than the
critter can absorb, the excess food is left on the hex.

CS 2112 Fall 2024 2/10 Final Project

• Serve. A critter may convert some of its own energy into food added to the hex in front of it, if that hex
is either empty or already contains some food.

• Attack. It may attack a critter directly in front of it. The attack removes an amount of energy from
the attacked critter that is determined by the size and offensive ability of the attacker and the defensive
ability of the victim.

• Grow. A critter may use energy to increase its size by one unit.
• Bud. A critter may use a large amount of its energy to produce a new, smaller critter behind it with the

same genome (possibly with some random mutations).
• Mate. A critter may attempt to mate with another critter in front of it. For this to be successful, the

critter in front must also be facing toward it and attempting to mate in the same time step. If mating is
successful, both critters use energy to create a new critter of size 1 whose genome is the result of merging
the genomes of its parents. Unsuccessful mating uses little energy.

4 Critter state

Critter state comprises several attributes and also the program that drives the critter. The critter has a
current location in the world and a current direction, represented as an integer between 0 and 5 as shown
in Figure 1. It also has a current size and energy. The critter also has some fixed attributes: its offensive and
defensive ability, the size of its memory, and the rules governing its behavior.

A critter has a posture, which it can change. The posture is an integer between 0 and 99, which the
critter may change arbitrarily.

Each critter has a derived attribute, its complexity. This is a weighted sum of the number of its rules,
the size of its memory, and its offensive and defensive abilities. The energy of certain actions the critter
performs increases with its complexity. The formula for complexity is found in Section 13.

5 Critter memory

Each critter has a memory called mem, which is an array of fixed length containing integers. The first few
entries in this array have a meaning that is the same for all critter species:

• mem[0]: the length of the critter’s memory (immutable, always at least 7)
• mem[1]: defensive ability (immutable, ≥ 1)
• mem[2]: offensive ability (immutable, ≥ 1)
• mem[3]: size (variable, but cannot be assigned directly, ≥ 1)
• mem[4]: energy (variable, but cannot be assigned directly, ≥ 1)
• mem[5]: pass number, explained below (variable, but cannot be assigned directly, ≥ 1).
• mem[6]: posture (assignable only to values between 0 and 99).

There are three kinds of memory entries: immutable entries that never change, variable entries that re-
flect the current state of the critter but that the critter’s rules cannot assign to, and general-purpose mutable
entries that can be both read from and assigned to by critter rules.

The size of the critter’s memory must be at least 7 to accommodate these entries. If the size is larger, the
remaining entries, with indices starting at 7, are general-purpose entries.

6 Rule language

The grammar for the rules is given as a context-free grammar in so-called EBNF (Extended Backus–Naur
Form1 in Figure 3. In EBNF grammars, the right-hand side may be a regular expression. EBNF does not
add any real expressive power to context-free grammars, but makes them easier to express concisely. The

1Despite its name, EBNF is apparently not due to either Backus or Naur, in concordance with Stigler’s law of eponymy.

CS 2112 Fall 2024 3/10 Final Project

https://en.wikipedia.org/wiki/Stigler%27s_law_of_eponymy

parts of the right-hand side shown in blue are EBNF syntax and are not part of the critter language. For
example, vertical bars separate alternatives, blue parentheses group symbols together, and the superscript
blue asterisk is the Kleene star operator, denoting zero or more repetitions of a symbol or symbols. Terminal
symbols are shown in typewriter font. Terminal symbols whose lexical representation is not fixed are shown
using angle brackets, e.g., ⟨number⟩. Non-terminals are shown in italics, like this: program. To simplify
parsing, parentheses are used for grouping expressions, whereas braces are used for grouping conditions,
and brackets are used for grouping arguments to commands and sensors.

program → rule rule∗

rule → condition --> command ;

command → update∗ update-or-action
update-or-action → update | action

update → mem [expr] := expr
action → wait | forward | backward | left | right

| eat | attack | grow | bud | mate

| serve [expr]

condition → conjunction (or conjunction)∗

conjunction → relation (and relation)∗

relation → expr rel expr | { condition }

rel → < | <= | = | >= | > | !=

expr → term (addop term)∗

term → factor (mulop factor)∗

factor → ⟨number⟩ | mem [expr] | (expr) | - factor | sensor
sensor → nearby [expr] | ahead [expr] | random [expr] | smell

addop → + | -

mulop → * | / | mod

Figure 3: Grammar for critter rules

The precedence of operations is specified by the grammar. All arithmetic operators associate to the left.
The parser should ignore blank lines and parts of lines that start with a double slash (//).

6.1 Syntactic sugar

Certain convenient abbreviations may be used in place of expressions mem[n] for certain literal constant
integers n. This syntactic sugar may be used both when programs are read from a file and when programs
are displayed to the user. The full list of abbreviations is as follows:

Abbreviation AST representation
MEMSIZE mem[0]
DEFENSE mem[1]
OFFENSE mem[2]
SIZE mem[3]
ENERGY mem[4]
PASS mem[5]
POSTURE mem[6]

CS 2112 Fall 2024 4/10 Final Project

Therefore, a rule like mem[3]>1000 --> mem[11] := mem[11] - mem[4]; can be written and displayed
completely equivalently as SIZE>1000 --> mem[11] := mem[11] - ENERGY;

The syntactic sugar does not appear in the abstract syntax tree, however. Regardless of how the expres-
sion is written in the input file or displayed to the user, the underlying abstract syntax tree node is always
of the form mem[n]. You are encouraged to have your program display abstract syntax using the syntactic
sugar, but this is not required.

6.2 Executing rules

When it is a critter’s turn, it finds the first rule in its list of rules whose condition is true. It then performs
all of the updates on the right-hand-side of the rule, along with the action, if any. If the command for the
rule contains no action, the process repeats: starting again from the very first rule, it finds the earliest rule
whose condition holds, and performs its command. This process is performed up to 999 times, after which
the critter automatically performs a wait action. If no rule’s condition is true on any pass through the rules,
the critter’s turn immediately ends and it performs a wait action on that turn.

The special memory location mem[5] (sugar: PASS) reports which pass through the rules is being done.
It has the value 1 on the first pass through the rules, 2 on the second pass (if any), then 3, and so on up to a
maximum of 999. It starts over again at 1 on the critter’s next turn.

It may be possible to accelerate running the rules in various ways. For example, later passes might only
check rules whose condition could possibly have become true. Or, if the selected rule has no effect on critter
state, the critter will never select any other rule and there is no reason to run further passes. However, these
sorts of optimizations are not required.

7 Sensing

A critter can sense its immediate surroundings using sensor expressions as described in the grammar.

• The expression nearby[dir] reports the contents of the hex in direction dir, where 0 ≤ dir ≤ 5. Here the
direction is relative to the critter’s current orientation, so 0 is always immediately in front, 1 is 60 degrees
to the right, and so on. (If d is out of bounds, its remainder when divided by 6 is used.) The contents are
reported as a number n, as follows:

– 0: the hex is completely empty.
– n > 0: the hex contains a critter with appearance n (see Section 8).
– n < −1: the hex contains some food, with total energy value (−n) − 1.
– n = −1: the hex contains a rock.

• The expression ahead[dist] reports the contents of hex that is directly ahead of the creature at distance
dist, using the same scheme as nearby. Thus, ahead[0] reports on the appearance of the current critter. A
negative distance is treated as zero distance.

• The expression smell uses the critter’s sense of smell to report the direction and distance to the nearest
food, up to a distance of MAX_SMELL_DISTANCE (= 10) hexes. The result of the expression is 1, 000 ·distance+
direction, where direction is relative to the critter’s current orientation, as depicted in Figure 4. If the food
is not precisely in one of the six directions, the direction closest to the direction to the food is used in this
expression. Ties between two directions are broken in an implementation-defined manner. If there is no
food within MAX_SMELL_DISTANCE hexes, the result is 1,000,000.

• The random expression generates a random integer from 0 up to one less than the value of the given
expression. Thus, random[2] gives either 0 or 1 randomly. For n < 2, random[n] is always zero.

8 Critter appearance

The entry mem[6] (sugar: POSTURE) contains the critter’s posture, which defines part of how it looks to other
critters. The posture can be used as a way to signal to other nearby critters what the current critter is up to,

CS 2112 Fall 2024 5/10 Final Project

Figure 4: Smell direction is determined based which of the six wedges the food hex lies in. Here smell would have the value
3,001.

or as a way of signaling species identity. Initially zero, the posture is set by simply assigning to its memory
location.

When a critter is seen by another critter (or by itself, using ahead[0]), its appearance is reported as a
positive integer, equal to size ∗ 1,000 + posture ∗ 10 + direction. In other words, if the size is SS, the posture is
PP, and the direction is D, then the appearance is SSPPD. Note that the critter’s posture is always less than 100.
A newly created critter has size 1 and posture 0, so its appearance is 1,000 + direction. Here, direction is, as
usual, one of {0, . . . , 5}, and is reported relative to the observing critter’s direction. For example, a direction
of 3 means that the observed critter is facing in the direction opposite from that of the observing critter.
Critter programs can use the operators mod and / to extract the different components of the appearance.

9 Energy and size

A critter has an initial size of 1 but can increase its size using the action grow. Size affects energy expenditure
but also makes the critter more effective at some actions. Size also determines the maximum energy of the
critter. For each point of size, the critter can hold ENERGY_PER_SIZE (= 500) points of energy. Any updates
that would increase energy beyond this point cause excess energy to be discarded.

If energy ever goes to (or below) zero, the critter dies. Its death adds to the food on its hex a number of
food points equal to FOOD_PER_SIZE (= 200) points per point of critter size. Critters cannot “borrow” energy
to perform an action even if the action adds enough energy to put them back in positive territory.

10 Attacking and defending

When one critter attacks another, some damage is done to the defending critter (the victim). This subtracts
energy from the victim. If the victim’s energy goes to zero (or lower), the victim dies and is turned into an
amount of food proportional to its size.

When one critter attacks another, the damage done depends on the sizes of the two critters and on their
offense and defense abilities. If critter 1 attacks critter 2, S 1 and S 2 are the sizes of the corresponding critters,
O1 is the offensive ability of critter 1, and D2 is the defensive ability of critter 2, the energy removed from
critter 2 is:

round(BASE_DAMAGE · S 1 · P(DAMAGE_INC · (S 1 · O1 − S 2 · D2)))

CS 2112 Fall 2024 6/10 Final Project

where BASE_DAMAGE = 100, DAMAGE_INC = 0.2, and P(x) is the logistic function:

P(x) =
1

1 + e−x

and round(x) indicates the value of x rounded to the nearest integer.
This formula means that critters do damage proportional to their size, but that they do only half their

maximum damage if they are evenly matched against the defending critter. Damage falls off quickly to
zero when attacking a critter with a higher effective defense.

11 Mutation

When a critter’s genome is copied to a new critter, the copy is sometimes perfect. But with probability
p = 1/4 there will be at least one mutation. If a mutation occurs, then there is a 1/4 chance of further
mutations. For example, an overall chance of at least two mutations is 1/16.

A mutation is either a change to an attribute or a change to the rule set, with each equally probable. The
attributes that may change are the size of the memory and the offensive and defensive abilities. A change
to an attribute is an increment or decrement, chosen with equal probability, to one of these three attributes,
chosen with equal probability. However, changes to attributes never reduce them below their minimal legal
value (7 for memory size, 1 for offense and defense).

A mutation to the rule set is performed by randomly picking a node in the abstract syntax tree describing
the entire set of rules. All nodes are chosen with equal probability. Given that a node has been selected, one
of the following changes is made, with equal probability among each of the possible alternatives:

1. Remove: The node, along with all its descendants, is removed. If the parent of the node being removed
needs a replacement child, one of the node’s direct children of the correct kind is randomly selected. For
example, a rule node is simply removed, whereas a binary operation node would be replaced with either
its left or its right child. Note that a legal program must contain at least one rule.

2. Swap: The order of two children of the node is switched. For example, this allows swapping the posi-
tions of two rules, or changing a − b to b − a.

3. Replace: The node and its descendants are replaced with a randomly selected subtree of the right kind.
Randomly selected subtrees are chosen from somewhere in the current AST. The entire AST subtree
rooted at the selected node is cloned (deep-copied).

4. Transform: The node is replaced with a random, newly created node of the same kind (for example,
replacing attack with eat, or + with *), but its children remain the same. Literal integer constants are
randomly adjusted up or down by the value of java.lang.Integer.MAX_VALUE/r.nextInt(), where legal,
assuming that r is an object of class java.util.Random.

5. Insert: A newly created node is inserted as the parent of the mutated node. The old parent of the
mutated node becomes the parent of the inserted node, and the mutated node becomes a child of the
inserted node. If the inserted node requires more than one child, the children that are not the original
node are copies of randomly chosen nodes of the right kind from the entire rule set.

6. Duplicate: For nodes with a variable number of children, a randomly selected subtree of the right type
(as in Replace mutations) is appended to the end of the list of children. This applies to the root node,
where a new rule can be added, and also to command nodes, where the sequence of updates can be
extended with another update.

Not all mutations will make sense on all node types. The mutations that may occur must result in a
well-formed AST: that is, one that could be the result of parsing an input file.

12 Budding and mating

When a new critter is created by budding, it appears directly behind the critter doing the budding. When
two critters mate, it appears directly behind one of the two critters, chosen at random.

CS 2112 Fall 2024 7/10 Final Project

Newborn critters do not get a turn in the time step in which they are created.
When a new critter is created by budding, its rules are copied from its parent, modulo possible mutation.

Its attributes are also copied from the parent, with the exception of energy, size, and posture. Energy is set
to a constant INITIAL_ENERGY (= 250), size is always set to 1, and its posture is always set to 0. All memory
locations at or above index 7 are set to zero in the newly created critter.

When two critters mate, however, they exchange genetic material to form the new critter. Attributes 0–2
are chosen at random from one of the two critters. Other attributes are chosen as for budding. The new rule
sequence is chosen by picking the corresponding rule in sequence from either the ‘mother’ or the ‘father’,
at random. Thus, the new critter inherits, in general, some rules from each parent. If the mother or father
have different-sized rule sets, the new rule set either has the size of the mother or the father, randomly
chosen. Thus, if the mother and father have identical genomes, and there are no mutations, the child will
have the same genome too.

13 Energy

Different actions take different amounts of energy, even waiting for a turn. The energy cost of different
actions is as follows:

• wait: this action increases the critter’s energy by its own size times SOLAR_FLUX (= 1).
• left (turn), right (turn), and eat: energy equal to the critter’s size.
• forward and backward: energy equal to the critter’s size times MOVE_COST (= 3).
• serve: energy equal to the critter’s size, plus the amount of energy served onto the hex in front. A critter

can use the action serve to send its own energy down to zero, killing it, but not below. A critter that kills
itself by overserving deposits additional food onto its own hex in the usual way, as described in §9.

• attack: energy equal to the critter’s size times ATTACK_COST (= 5).
• grow: energy equal to size · complexity · GROW_COST (= 1).
• bud: BUD_COST (= 9) · complexity energy.
• mate: MATE_COST (= 5) · complexity energy.

Several of these energy costs depend on the critter complexity. If r is the number of rules in the critter
program and offense and defense are the critter’s offensive and defensive abilities, the critter complexity is
equal to:

r · RULE_COST + (offense + defense) · ABILITY_COST

Most actions take the same energy whether they are successful or unsuccessful. One exception is the
mate action, which only costs as much as turn if it is unsuccessful.

14 Handling out-of-bounds arguments

One important principle is that syntactically legal critter programs always evaluate successfully. Even when
an argument to a sensor or action might seem to be out of bounds, the expression or action will complete.
Mutation to critter programs can never cause the simulation as a whole to fail.

Ostensibly out-of-bounds arguments are handled in the following way for the various language con-
structs:

• mem[expr]: A read from a memory location expr where expr is not a valid memory index always returns
0. An update to an illegal memory location has no effect. An update to a memory location whose value
is constrained (e.g., mem[6]) also has no effect if the value is out of bounds for that location.

• + and -: these operate exactly like Java + and -.
• / and mod: If the divisor is zero, the result of the expression is also zero. Otherwise these operators should

act like Math.floorDiv() and Math.floorMod(), respectively.

CS 2112 Fall 2024 8/10 Final Project

• nearby[expr]: the nonnegative remainder of expr when divided by 6 is used as the direction.
• ahead[expr]: acts like ahead[0] when expr < 0.
• random[expr]: always zero when expr < 2.
• serve[expr]: acts like serve[0] when expr < 0.

15 Manna

At the end of each critter turn, a certain amount of food may be randomly added to the board. If there are
N living critters, the probability of having food appear is 1/N. When food is to appear, MANNA_COUNT (=6)
hexes are chosen at random per 1,000 hexes on the board, rounded down. For example, if there are 4,999
hexes on the board, (⌊6 * 4999/1000⌋ = 29) hexes are chosen at random to receive food. On all chosen hexes
that are empty, non-rock hexes or that already contain food, the amount of food on the hex is increased by
MANNA_AMOUNT (=10).

16 Example critter program

The following critter program should be able to survive, find food, and reproduce. You should be able to
make a better critter program. In fact, you should be able to evolve a better critter!

POSTURE != 17 --> POSTURE := 17; // we are species 17!
nearby[3] = 0 and ENERGY > 2500 --> bud;
{ENERGY > SIZE * 400 and SIZE < 7} --> grow;
ahead[1] < -1 and ENERGY < 500 * SIZE --> eat;
// next line attacks only other species
(ahead[1] / 10 mod 100) != 17 and ahead[1] > 0 --> attack;
{ahead[2] < -10 or random[20] = 0} and ahead[1] = 0 --> forward;
ahead[3] < -15 and ahead[1] = 0 --> forward;
ahead[4] < -20 and ahead[1] = 0 --> forward;
nearby[0] > 0 and nearby[3] = 0 --> backward;
// karma action: donate food if we are too full or large enough
ahead[1] < -1 and { ENERGY > 2500 or SIZE > 7 } --> serve[ENERGY / 42];
random[6] = 1 --> left;
random[5] = 1 --> right;
1 = 1 --> wait; // mostly soak up the rays

17 Constants

Numbers used in this document are mostly parameters that have symbolic names. We may fiddle with the
values of these parameters to make the simulation more interesting, so you should always use the symbolic
names rather than hard-coding them into your program.

The current values of the simulation constants are shown in Figure 5. They are also provided with the
A5 release in the file Constants.java. Most of the constants are integers, but a few are real numbers, as
indicated by the presence of a decimal point.

18 Challenges

This project has several different kinds of subsystems. One of the major challenges will be to maintain a
separation of concerns, so that, for example, your simulation code is entirely separate from your graphics
code. The simulation code should avoid knowing about or naming the graphics code. Similarly, you should
try to separate different parts of the simulation into different modules. Your programming tasks will be

CS 2112 Fall 2024 9/10 Final Project

Name Value Description
BASE_DAMAGE 100 The multiplier for all damage done by attacking
DAMAGE_INC 0.2 Controls how quickly increased offensive or defensive ability affects

damage
ENERGY_PER_SIZE 500 How much energy a critter can have per point of size
FOOD_PER_SIZE 200 How much food is created per point of size when a critter dies
MAX_SMELL_DISTANCE 10 Maximum distance at which food can be sensed
ROCK_VALUE -1 The value reported when a rock is sensed
WIDTH 50 Default number of columns in the world map
HEIGHT 87 Default height of the world map
MAX_RULES_PER_TURN 999 The maximum number of rules that can be run per critter turn
SOLAR_FLUX 1 Energy gained from sun by doing nothing
MOVE_COST 3 Energy cost of moving (per unit size)
ATTACK_COST 5 Energy cost of attacking (per unit size)
GROW_COST 1 Energy cost of growing (per size and complexity)
BUD_COST 9 Energy cost of budding (per unit complexity)
MATE_COST 5 Energy cost of successful mating (per unit complexity)
RULE_COST 2 Complexity cost of having a rule
ABILITY_COST 25 Complexity cost of having an ability point
INITIAL_ENERGY 250 Energy of a newly birthed critter
MIN_MEMORY 7 Minimum number of memory entries in a critter
MANNA_COUNT 6 Number of food items randomly dropped onto the map per time step

per 1,000 hexes on the board
MANNA_AMOUNT 10 Amount of food in each item randomly dropped onto the map

Figure 5: Constants

simpler if the interpretation of critter rules is kept separate from the mechanics of the world and even of
the critter itself.

Thoughtful up-front design with your partners will save you a tremendous amount of time later on.
Meet early as a group and decide on how you will structure your project and agree on interfaces and
specifications that connect the different parts of the code.

19 Extensions

You may implement extensions to the critter simulation if you like, but you need not. Possible extensions
might include: additions to the critter language (abbreviations? function definitions?) or the critter model
(better sensory capabilities?); changes to the world (volcanos? water? plants that reproduce and provide
food? climate gradients?); better user control over the world view (zooming and panning? high-level critter
commands?). Feel free to be creative. If your extensions might interfere with our testing, for example by
making our critter programs invalid, it is wise to support a command-line flag -compatible that turns off
your extra features. We recommend being backward-compatible to our specification in any case.

20 Tournament

We will have a tournament at the end of the semester when you can bring in some critter programs to
compete in various events such as survival, food gathering, and a maze race. We encourage participation
in the tournament, and there will be free food, but the fun is optional. We will post more information about
the tournament as it approaches.

CS 2112 Fall 2024 10/10 Final Project

	Changes to the spec
	The world
	Critter actions
	Critter state
	Critter memory
	Rule language
	Syntactic sugar
	Executing rules

	Sensing
	Critter appearance
	Energy and size
	Attacking and defending
	Mutation
	Budding and mating
	Energy
	Handling out-of-bounds arguments
	Manna
	Example critter program
	Constants
	Challenges
	Extensions
	Tournament

