
CS 2112 Fall 2024
Assignment 5

Interpretation and Simulation
Due: Friday, November 15, 11:59PM

Design Document due: Wednesday, November 6, 11:59PM

This assignment requires you to implement

• an interpreter for the critter language introduced in the last assignment,
• a simulator that maintains a state of the execution environment and emulates the execution of pro-

grams, and
• a console interface for controlling the simulation and querying the state of execution.

In addition to implementing new functionality, you are expected to make sure that the functionality
implemented for Assignment 4 works correctly. This may require fixing bugs in your code. However, the
majority of the grades in this assignment will be on the new functionality.

1 Changes

• In section 10 Overview of tasks, the third item in the list of major tasks should say “Implement the
controller interface and its communication with the world model.” The word “controller” is replacing
“console”, which is a mistake from the previous version.

2 Instructions

2.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementation easy to
understand, is modular, and takes advantage of inheritance to maximize code sharing. A correct program
compiles without errors or warnings and behaves according the requirements given here. A program with
good style is clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic variable
names and proper indentation. Public methods should be accompanied by Javadoc-compliant specifica-
tions. Class invariants should be documented. Other comments should be included to explain nonobvious
implementation details.

2.2 Final project

This assignment is the second installment of the final project for the course. Read the Project Specification
to find out more about the final project and the language you will be working with in this assignment.

2.3 Partners

You will work in groups of three or four for this assignment. This should be the same group as in Assign-
ment 4.

Remember that the course staff is happy to help with any problems you run into. Read all Ed posts and
ask questions that have not been addressed, attend office hours, or set up meetings with any course staff
member for help.

After each assignment, you will be asked to fill out a brief survey on CMSX providing peer evaluations
for your teammates, and they will do the same for you. Peer evaluations will be reviewed by course staff
and become a component of your grade.

CS 2112 Fall 2024 1/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2024fa/hw/a4/a4.pdf
http://www.cs.cornell.edu/courses/cs2112/2024fa/project/project.pdf

2.4 Restrictions

Use of any standard Java libraries from the Java SDK is permitted. However, the use of a parser generator
(e.g., CUP) is prohibited.

The release code contains all the new classes you should add to your existing code. You should follow
the instructions in their Javadoc, so that our testing software can test your code.

2.5 Release

The release files are available on CMS. You should download them and incorporate them into your critterworld
project. The folders correspond to packages in your project.

You will also need to make the following changes to your project build.gradle file:

• Underneath the application block (the block with mainClass inside), add the following code to include
console jar for A5:

1 // console jar for A5
2 jar {
3 duplicatesStrategy = DuplicatesStrategy.EXCLUDE
4 archiveBaseName.set(’Console’)
5 manifest {
6 attributes ’Main-Class’: ’console.Console’
7 }
8 from(sourceSets.main.output) {
9 include ’**’

10 }
11 }

• Inside the application block, change mainClass so that it reads

1 mainClass = "console.Console"

3 Design overview document

Same as A4, we require that you submit an early draft of your design overview document in advance
before the assignment due date. The Overview Document Specification outlines our expectations. Your
design and testing strategy might not be complete at that point, but we would like to see your progress.
Feedback on this draft will be given promptly after the overview is due.

These are key topics to cover in your design overview document:

• What are the key data structures you will use for this assignment to simulate the world? What are the
core classes and abstractions you will implement?

• What are the key algorithms you will need? Which ones will be challenging to implement, and why?
• What will be your testing strategy for this assignment?
• What will be your implementation strategy, and how will you go about dividing responsibilities between

the group members?

4 Version control

As in the last assignment, you must submit file log.txt that lists your commit history from your group.
Additionally, you must submit a file a5.diff showing differences for changes you have made to files

you submitted in Assignment 4. Version control systems already provide this functionality.

CS 2112 Fall 2024 2/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2024fa/handouts/design-overview-guidelines.html

5 Interpretation

The core of this assignment is implementing an interpreter for critter programs. An interpreter is a program
that emulates the execution of programs written in some programming language. For example, the Java
run-time system includes a bytecode interpreter that executes “bytecode” from Java class files.

Your interpreter will work directly on the AST generated by the parser from Assignment 4. It will
interpret the rules by recursively evaluating the AST nodes representing conditions and expressions in the
context of the current state of the critter and the state of the world. The current state of the critter and the
state of the world are known as the execution environment. The interpreter executes rules until an action
is taken. It also updates the critter’s memory as described by the rules applied.

5.1 Loading new critters

To add a new critter to the world, the critter’s initial state and program are read from a critter file. The
critter files may contain blank lines and lines beginning with //, indicating comments. These lines should
be ignored, as described in the previous assignment. Lines may be terminated either with just a newline
character (’\n’) or a Windows-style "\r\n" sequence, and trailing whitespace is allowed on any line. Oth-
erwise, the format of a critter file is as follows:

species: <name>
memsize: <memory size>
defense: <defensive ability>
offense: <offensive ability>
size: <size>
energy: <energy>
posture: <posture>
<program>

The species name <name> is a string. It is recorded for identification purposes, but is not otherwise used
for this assignment and has no effect on the critter simulation. The next six values specified in angle brackets
are nonnegative integers. The first represents the number of memory locations of the critter and the rest
represent initial values for some of the memory locations. Following these values are the critter rules. These
are given in the syntax described in the Project Specification. The critter rules should be parsed with your
parser from Assignment 4. An example of a critter file is given in the example directory. A valid critter
file must have these elements occurring in this order. Except for syntax errors generated while parsing the
critter rules, any anomalies discovered when reading a critter file should result in a warning message to the
user and a default value supplied if appropriate, but execution should proceed. In addition to specifying a
critter file to load, the user should be able to specify the number of such critters to be added to the world.
These critters are placed at randomly chosen legal positions in the world: that is, not on top of a rock, food,
or another critter.

5.2 Interpreting critter rules

You will need to implement the recursive algorithm described in the Project Specification to decide which
action to take using the evaluated AST. You will also need to use your AST mutation code from the last
assignment to implement mating and budding.

6 Simulation

A simulator keeps track of the state of the world and all the critters and other artifacts in it. Your simulator
will load the initial state of the world from a file.

CS 2112 Fall 2024 3/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2024fa/project/project.pdf
http://www.cs.cornell.edu/courses/cs2112/2024fa/project/project.pdf

6.1 Loading world definitions

The initial state of the world is given in a world file, which may contain blank lines and lines beginning
with //, indicating comments. These lines should be ignored. The first two lines of the world file have the
following format:

name <world name>
size <width> <height>

The <world name> parameter is a string specifying the name of the world, which should be printed out
when the world is loaded. The <width> and <height> parameters specify the width and height of the world.
Each subsequent line must have one of the following three forms, which specify where to place a rock, food
or a critter:

• rock <column> <row>

• food <column> <row> <amount>

• critter <critter file> <column> <row> <direction>

You are not required to check for objects being placed on the same hex or on hexes outside of the
world, although you are encouraged to do so. All critter files must be in the same directory as the world
file. This means that if the world file is located at /home/bob/world.txt, and that file contains the line
critter alice.txt 0 0 0, then the critter file is located at /home/bob/alice.txt. Two methods that may
be useful for finding critter files are java.io.File.getAbsoluteFile() and java.io.File.getParent(). An
example world file is given in world.txt. As with critter files, any anomalies discovered when reading a
world file should result in a warning message to the user and a default value supplied if appropriate, but
execution should proceed.

6.2 Simulating the world

You will need to implement a model that keeps track of the state of the world: its dimensions and contents,
critters and their states, etc., as described in the Project Specification. The world will be able to advance
time steps, update the state of the world, and allow each critter to execute its rule set in each time step.

7 User interface

The console.Console class is provided to you. If you implement the Controller right, the command line
interface should just work. It should support the following commands:

• new
Start a new simulation with a world populated by randomly placed rocks.

• load <world file>
Start a new simulation with the world specified in file <world file>. Your world initializer should read
critter files associated with any critters specified in <world file>.

• critters <critter file> <n>
Read the critter file <critter file> and randomly place n such critters into the world.

• step <n>
Advance the world for n time steps.

• info
Print the number of time steps elapsed, the number of critters alive in the world, and an “ASCII art” map
of the world. The hex contents displayed in the map should follow these notations:

– - for an empty space
– # for a rock
– d for a critter facing in direction d

CS 2112 Fall 2024 4/9 Assignment 5

http://www.cs.cornell.edu/courses/cs2112/2024fa/project/project.pdf

F - -
- - -

- - - #
- - -

- 1 - -
- - -

- - -
- - -

- 5 - -

(a) An ASCII-art map of the world

(0,8) (2,8) (4,8) (6,8)
(1,7) (3,7) (5,7)

(0,6) (2,6) (4,6) (6,6)
(1,5) (3,5) (5,5)

(0,4) (2,4) (4,4) (6,4)
(1,3) (3,3) (5,3)

(0,2) (2,2) (4,2) (6,2)
(1,1) (3,1) (5,1)

(0,0) (2,0) (4,0) (6,0)

(b) Coordinates in an ASCII-art map

Figure 1: The structure of ASCII-art maps

– F for food.

Figure 1(a) shows an example ASCII-art map for a world with 7 columns and height of 9. The columns of
this map corresponds to the columns of the world, and adjacent columns are staggered by one line. Fig-
ure 1(b) shows the (column,row) coordinates corresponding to various positions on the example ASCII-
art map.

• hex <column> <row>
Print a description of the contents of the hex at coordinate (column,row). If a critter is present, print the
following as a description of the critter:

– its species
– the contents of at least its first seven memory locations
– its rule set, using the pretty-printer from Assignment 4
– the last rule executed

If food is present, print the amount of food.

8 Testing

A portion of your grade will be based on the quality and exhaustiveness of your test cases. Due to the open
ended nature of this assignment, our test cases used when grading tend to test end-to-end functionality.
This means that a small mistake anywhere in your project can cause a very large number of our tests to
fail against your submission. For this reason, an exhaustive test strategy will be paramount to ensure your
project is functional. On the last assignment, we provided a sample test plan. You must design your own
test plan for this assignment of similar size and scope.

Testing the world simulation is difficult without a graphical representation. The main focus of this
assignment is therefore on correctly interpreting critter programs, rather than on perfecting the world sim-
ulation. Our grading scheme will reflect this priority. We recommend that you work with small worlds and
focus on testing each language construct in isolation and on testing individual critter actions. Make sure
your info command prints out accurate ASCII-art representations of the world so you (and we) can tell that
your code is correct.

It may be difficult to debug your implementation using only the output of the program as defined in the
specification. We recommend adding additional diagnostic functionality so that you can see, for example,
why each rule is chosen or not chosen during the evaluation. We also recommend developing unit tests for
each language construct. For example, you want to be sure that all the sensors produce the right values and
all the actions do what they are supposed to. Testing correctness fully might be challenging to achieve by
only running the simulation, so think about what other test harnesses would be helpful. Time spent making
viewing and testing as easy as possible will be well worth it. If you put all your tests in src/test/java,
Gradle will run them for you every time you run the Gradle build task and print a report, which you can
find in the Gradle build folder. You should be sure to test:

CS 2112 Fall 2024 5/9 Assignment 5

• loading a full critter file
• generating a new world
• loading a full world file
• stepping a single critter
• stepping multiple critters
• printing the ASCII-art world
• that the Spiral Critter travels in a spiral path.

This list is by no means exhaustive, but rather offers a few key milestones. Your full suite of tests should
be more thorough.

CS 2112 Fall 2024 6/9 Assignment 5

9 Written problems

1. A bag is a collection that allows duplicate elements. The code below partially implements a bag abstrac-
tion.
1 /** A Bag is an unordered collection of elements (of type T). Elements
2 * are non-null and may be duplicates of other elements in the bag. */
3 public class Bag<T> implements Collection<T> {
4 private static class Node<T> {
5 T elem;
6 int count;
7 Node<T> next; // May be null.
8 // Invariant: count is positive and nodes starting from
9 // next form a null-terminated linked list.

10
11 public Node(T x) {
12 elem = x;
13 count = 1;
14 next = null;
15 }
16 }
17 // Class invariant: Every node in the list starting from ‘head’
18 // has a distinct n.elem.
19 // Representation: Each element n.elem is present in the bag the
20 // number of times specified by n.count.
21 private Node<T> head = null; // null if bag is empty
22
23 /** Effect: Adds x to the bag. If x is already in the bag,
24 * adds x again to the bag and returns true. Otherwise,
25 * returns false. */
26 public boolean add(T x) {
27 Node<T> n = head;
28 if (n == null) { head = new Node<>(x); return false; }
29 while (!n.elem.equals(x) && n.next != null) {
30 n = n.next;
31 }
32 // At this point n != null, and if there is a node m in the list
33 // where m.elem equals x, then n==m.
34 // Otherwise, n is the last node in the list.
35 if (n.elem.equals(x)) {
36 n.count++;
37 return true;
38 } else {
39 n.next = new Node<>(x);
40 return false;
41 }
42 }
43 }

Read the code carefully and answer the following questions:

a) Consider a bag constructed by making n calls to the method add(). What is the worst-case asymptotic
time to construct the whole bag, as a function of n?

The code gives a postcondition for the while-loop. Let’s construct the argument that the while-loop
correctly achieves this postcondition.

b) Give a loop invariant for the while-loop that is strong enough to show its correctness.
c) Argue that the loop invariant is established at the beginning of the loop.
d) Argue that the loop invariant is preserved by each loop iteration.
e) Use the loop invariant to argue that the postcondition holds after the loop.

2. Write a critter program for a critter that walks in a growing hexagon spiral that, on an infinite world
without any rocks, would eventually hit every hex. When it comes to food, it should eat the food. (Hint:
the critter will need additional memory slots.)

CS 2112 Fall 2024 7/9 Assignment 5

3. Write a critter program for a critter that sits in one place until food appears within one hex of it. It
then eats the food and moves to where the food was. While sitting, whenever it gets within 100 of its
maximum energy, it tries to bud a child.

10 Overview of tasks

Determine with your partner how to break up the work involved in this assignment. Here is a list of the
major tasks involved:

• Implement the interpreter for critter programs.
• Implement the state of the world and its critters.
• Implement the controller interface and its communication with the world model.
• Develop a good test suite to ensure that the interpreter is implemented correctly.
• Solve the written problems.

11 Tips and tricks

Modular design Think carefully about how to divide this programming assignment up into modules
that separate concerns effectively. For example, can you keep the interpreter code largely separate from
the rules of the world simulation? Can you express the rules of the world simulation simply and in a
localized way that makes it clear they are correct? In Assignment 6, the console interface will be replaced
by a graphical user interface (GUI), which will display information similar to the current command-line
interface. Consequently, if your world model is properly decoupled from the user interface, you should be
able to substitute the GUI for the command-line interface without changing the world simulation. This is
the essence of the Model-View-Controller design pattern.

File paths Note that all files (critter and world definitions) should be specified by relative file paths from
the project root. Make sure to write your relative file paths in an OS-agnostic way; that is, you should not
be hard-coding in any back or forward slashes.

12 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your final design overview document for the assignment. It should also include
descriptions of any extensions you implemented.

• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project. Source code
should reside in the src/main/java directory with an appropriate package structure.

– Tests: You should include code for all your test cases. These should be in in src/test/java, separate
from the rest of your source code. Subpackages are permitted.

– External libraries: If you imported any external libraries via Gradle, include your build.gradle file.

Do not include any .class files.
• log.txt: A dump of your commit log from your version control system.
• a5.diff: A text file showing diff of changes to files that were submitted in the last assignment, obtained

from the version control system.
• bag.txt: This file should contain your solution to the bag written problem.
• spiral.txt: This file should be a plain text file containing your solution to written problem 9.2 (spiral crit-

ter program) and nothing else. It should be possible to load and parse the file with the ParseAndMutateApp
program from A4. It does not need to include the rest of the metadata included in critter files - just the
program.

CS 2112 Fall 2024 8/9 Assignment 5

• eat-and-bud.txt: This file should be a plain text file containing your solution to written problem 9.3 and
nothing else. It should be possible to load and parse the file with the ParseAndMutateApp program from
A4. It does not need to include the rest of the metadata included in critter files - just the program.

CS 2112 Fall 2024 9/9 Assignment 5

	Changes
	Instructions
	Grading
	Final project
	Partners
	Restrictions
	Release

	Design overview document
	Version control
	Interpretation
	Loading new critters
	Interpreting critter rules

	Simulation
	Loading world definitions
	Simulating the world

	User interface
	Testing
	Written problems
	Overview of tasks
	Tips and tricks
	Submission

