
Threads and Concurrency

CS2112 Fall 2021

What is a Thread?
A sequence of computer instructions that can perform a
computational task independently and concurrently
with other threads

– Most programs have only one thread:
• main thread

– GUIs have two other threads:
• application (or event dispatch) thread
• rendering thread

– A program can have many threads
– Threads share access to memory

What is a Thread?
In reality, threads are an abstraction
● Separate threads can sometimes be on the same core

○ E.g. you can have 100 threads on a 4-core CPU
● We let the operating system worry about how threads

actually work

● The operating system provides
support for multitasking

● In reality there is one
processor doing all this

○ Any actual concurrency is
across the cores of the
processor

● But this is an abstraction too –
at the hardware level, lots of
multitasking

○ memory subsystem

○ video controller

○ buses

○ instruction prefetching

Concurrency (aka Multitasking)

•Refers to situations in which several
threads are running simultaneously

•Special problems arise
– race conditions
– deadlock

Threads in Java
• Threads are instances of the class Thread

- you can create as many as you like

• The Java Virtual Machine permits multiple concurrent
threads

- initially only one thread (executes main)

• Threads have a priority

- higher priority threads are usually executed preferentially

- a newly created Thread has initial priority equal to the thread that created
it (but can change)

Race Conditions
● A race condition can arise when two or more

threads try to access data simultaneously
● Thread B may try to read some data while thread

A is updating it
○ Updating may not be an atomic operation
○ Thread B may sneak in at the wrong time and

read the data in an inconsistent state
● Results can be unpredictable!

Example – A Lucky Scenario
private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(), and there is one
element on the stack

1. thread A tests stack.isEmpty() ⇒ false

2. thread A pops ⇒ stack is now empty

3. thread B tests stack.isEmpty() ⇒ true

4. thread B just returns ⇒ nothing to do

Example – An Unlucky Scenario
private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(), and there is one
element on the stack

1. thread A tests stack.isEmpty() ⇒ false

2. thread B tests stack.isEmpty() ⇒ false

3. thread A pops ⇒ stack is now empty

4. thread B pops ⇒ Exception!

Solution – Locking
private Stack<String> stack = new Stack<String>();

public void doSomething() {

synchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The Stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Solution – Locking

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

● You can lock on any object, including this

is equivalent to

File Locking

• In file systems, if two or more processes could access a
file simultaneously, this could result in data corruption

• A process must open a file to use it – gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in
Java

Deadlock
•The downside of locking – deadlock

•A deadlock occurs when two or more competing threads
are waiting for the other to relinquish a lock, so neither
ever does

•Example:
– thread A tries to open file X, then file Y
– thread B tries to open file Y, then file X
– A gets X, B gets Y
– Each is waiting for the other forever

Necessary Conditions for Deadlock

• Bounded resources

• No preemptions

• Hold & Wait

• Circular waiting

T1:
synchronized (lock1) {
 synchronized (lock2) {
 // ...
 }
}

T2:
synchronized (lock2) {
 synchronized (lock1) {
 // ...
 }
}

Necessary Conditions for Deadlock

• Bounded resources
– Limited number of

threads can use a
resource

–In this example, there
are only two threads

T1:
synchronized (lock1) {
 synchronized (lock2) {
 // ...
 }
}

T2:
synchronized (lock2) {
 synchronized (lock1) {
 // ...
 }
}

Necessary Conditions for Deadlock

• No preemptions
– No other thread can

take the resource until
the other thread is
done

T1:
synchronized (lock1) {
 synchronized (lock2) {
 // ...
 }
}

T2:
synchronized (lock2) {
 synchronized (lock1) {
 // ...
 }
}

Necessary Conditions for Deadlock

• Hold & Wait
– A thread holds one

resource while it is
waiting for a second
one

–T1 holds lock1 while
waiting for lock2

T1:
synchronized (lock1) {
 synchronized (lock2) {
 // ...
 }
}

T2:
synchronized (lock2) {
 synchronized (lock1) {
 // ...
 }
}

Necessary Conditions for Deadlock

• Circular waiting
– Threads wait for each
other in a circular way

–T1 waits for T2 who
waits for T1

Why is this condition not
sufficient on its own?

T1:
synchronized (lock1) {
 synchronized (lock2) {
 // ...
 }
}

T2:
synchronized (lock2) {
 synchronized (lock1) {
 // ...
 }
}

Dining Philosophers Problem:

Source: Wikipedia

Problem Description
"Five silent philosophers sit at a round table with bowls of spaghetti.
Forks are placed between each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a
philosopher can only eat spaghetti when they have both left and right
forks. Each fork can be held by only one philosopher at a time and so a
philosopher can use the fork only if it is not being used by another
philosopher. After an individual philosopher finishes eating, they need
to put down both forks so that the forks become available to others. A
philosopher can only take the fork on their right or the one on their left
as they become available and they cannot start eating before getting
both forks."

Source: Wikipedia

Can you design a procedure to
avoid deadlock, and ensure that
each philosopher gets to eat?

Approach 1: Resource Hierarchy
- Assign the forks an order (1, 2, … 5)
- Resources must be requested in order
- Ensures that one philosopher will be able

to pick up both forks and eat
- Avoids deadlock

Approach 2: Arbitrator
- Have an arbitrator who decides which

philosophers get to pick up their forks
- Arbitrator only gives forks to one

philosopher at a time
- Can be implemented as a mutex
- Can decrease parallelism

wait/notify

• A mechanism for event-driven
activation of threads

•Animation threads and the GUI event-
dispatching thread in can interact via
wait/notify

wait/notify

}
try {

wait();
} catch (InterruptedException ie) {} isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator – awaits
notification

notifies processes waiting for
animator lock

animator:

boolean isRunning = true;

public synchronized void run() { while (true) {
while (isRunning) {

//do one step of simulation

When to use parallel programming

For long-running computations, single-threaded programming
means wasting 3/4ths or 7/8ths of your compute resources

Multi-threading has high startup costs (constructing threads,
synchronization, etc.) -> not worth it for short computation

Ideally have embarrassingly parallel applications: little or no
dependency between parallel workers -> Communication
between parallel workers is slow

Finding Concurrency Bugs
● Extremely difficult

○ Sometimes the addition/removal of a print statement can
decide whether the program functions

○ Could only happen on certain machines
○ All up to timing!

● The only real way to find a concurrency issue is through
reasoning about your program

Java-style multi-threading not only form of
parallel programming available

Concurrency to hide I/O lag (storage is much slower than CPU; can perform 10,000s of math
operations while waiting for data) -> Python, JavaScript

Programming with multiple processes, each with own memory (no race conditions, but higher
communication costs)

Functional Programming using Promises and Callbacks (CS 3110)

SIMD Vector Parallelism (special instructions that operate on whole vectors) -> numpy

GPU Parallelism (CUDA) -> heavily used in Machine Learning

Tips for A6

● Platform.runLater() can be used to run drawing code on
the JavaFX thread

● Show your GUI design to other people -> watch how
they use it. Do they find the UX intuitive?

● Let your friend / parent play with your GUI for testing.
We tend to avoid unfinished sections and don’t test
them that much. They won’t.

