
Grammars & Parsing

Lecture 12
CS 2112 – Fall 2018

!2

Motivation

The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the

mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly, then
got sick.

…

� Not all sequences of words are
legal sentences

§ The ate cat rat the
� How many legal sentences are

there?
� How many legal programs are

there?
� Are all Java programs that

compile legal programs?
� How do we know what programs

are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

!3

A Grammar

Sentence ::= Noun Verb Noun
Noun ::= boys | girls | bunnies
Verb ::= like | see
� Our sample grammar has these

rules:
§ A Sentence can be a Noun followed

by a Verb followed by a Noun
§ A Noun can be ‘boys’ or ‘girls’ or

‘bunnies’
§ A Verb can be ‘like’ or ‘see’

� Examples of Sentence:
§ boys see bunnies
§ bunnies like girls
§ …

� Grammar: set of rules for generating
sentences in a language

� White space between words does
not matter

� The words boys, girls, bunnies, like,
see are called tokens or terminals

� The words Sentence, Noun, Verb are
called syntactic classes or
nonterminals

� This is a very boring grammar
because the set of Sentences is finite
(exactly 18)

!4

A Recursive Grammar
Sentence ::= Sentence and Sentence
 | Sentence or Sentence
 | Noun Verb Noun
Noun ::= boys | girls | bunnies
Verb ::= like | see

� This grammar is more interesting
than the last one because the set of
Sentences is infinite

� Examples of Sentences in this
language:

§ boys like girls
§ boys like girls and girls like

bunnies
§ boys like girls and girls like

bunnies and girls like bunnies
§ boys like girls and girls like

bunnies and girls like bunnies
and girls like bunnies

§ ...

� What makes this set infinite?
Answer:

§ Recursive definition of Sentence

!5

Detour
� What if we want to add a period at the end of every sentence?
Sentence ::= Sentence and Sentence .
 | Sentence or Sentence .
 | Noun Verb Noun .
Noun ::= …

� Does this work?
� No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

!6

Sentences with Periods

TopLevelSentence ::= Sentence .
Sentence ::= Sentence and Sentence
 | Sentence or Sentence
 | Noun Verb Noun
Noun ::= boys | girls | bunnies
Verb ::= like | see

� Add a new rule that adds a
period only at the end of the
sentence.

� The tokens here are the 7
words plus the period (.)

� This grammar is ambiguous:
 boys like girls and girls like
 boys or girls like bunnies

!7

Grammar for Simple Expressions
E ::= integer | (E + E)

� Simple expressions:
§ An E can be an integer.
§ An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E
followed by ‘)’

� Set of expressions defined by this
grammar is an inductively-defined
set

§ Is the language finite or infinite?
§ Do recursive grammars always

yield infinite languages?

� Here are some legal expressions:
§ 2
§ (3 + 34)
§ ((4+23) + 89)
§ ((89 + 23) + (23 + (34+12)))

� Here are some illegal
expressions:

§ (3
§ 3 + 4

� The tokens in this grammar are  
(, +,), and any integer

!8

Parsing
� Grammars can be used in two

ways
§ A grammar defines a

language (i.e., the set of
properly structured
sentences)

§ A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

� To parse a sentence is to build
a parse tree
§ This is much like

diagramming a sentence

� Example: Show that  
((4+23) + 89)  
is a valid expression E by
building a parse tree

E

(E)E+

89
(E)E+

4 23

Ambiguity
� Grammar is

ambiguous if some
strings have more than
one parse tree

� Example: arithmetic
expressions without
precedence:

E → n | E + E
 | E * E | (E)

!9

E

+ EE

2

*E E

3 5

E

+

E

E

2

*

E

E

3 5

2 + 3 * 5

� Ambiguities resulting from not handling precedence
can be handled by introducing extra levels of
nonterminals.

E (expr) → T | T + E
T (term) → F | F * T
F (factor) → n | (E)

Precedence

!10

2 + 3 * 5
E

T +

TF

2 F * T

3

5

F
Only one parse tree!

E

!11

Recursive Descent Parsing
� Idea: Use the grammar to design a recursive program to check if a

sentence is in the language
� To parse an expression E, for instance

§ We look for each terminal (i.e., each token)
§ Each nonterminal (e.g., E) can handle itself by using a recursive call

� The grammar tells how to write the program!
� A recognizer:

boolean parseE() {
 if (first token is an integer) return true;
 if (first token is ‘(‘) {
 scan past ‘(‘ token;
 parseE();
 scan past ‘+’ token;
 parseE();
 scan past ‘)’ token;
 return true;
 }
 return false; }

Abstract Syntax Trees vs. Parse Trees
� Result of parsing: often a data structure representing

the input.
� Parse tree has information we don’t need, e.g.

parentheses.

!12

Abstract syntax tree

*

5

+

2

3
new BinaryOp(TIMES,  
 new BinaryOp(PLUS,  
 new Num(2),  
 new Num(3)),  
 new Num(5))

Parse tree / concrete syntax tree

E

T +

TF

2 F * T

3

5

F

E

!13

Java Code for Parsing E

public static ExprNode parseE(Scanner scanner) {
if (scanner.hasNextInt()) {

int data = scanner.nextInt();
return new Node(data);

}
check(scanner, ‘(‘);
left = parseE(scanner);
check(scanner, ‘+’);
right = parseE(scanner);
check(scanner, ‘)’);
return new BinaryOpNode(PLUS, left, right);

}

!14

Responding to Invalid Input

� Parsing does two things:
§ checks for validity (is the input a valid sentence?)
§ constructs the parse tree (usually called an AST or abstract

syntax tree)

� Q: How should we respond to invalid input?

� A: Throw an exception with as much information for the
user as possible
§ the nature of the error
§ approximately where in the input it occurred

The associativity problem

� Top-down parsing works well with right-recursive
grammars (e.g.,

� Problem: leads to right-associative operators:

� 1 + 2 + 3 :

!15

E (expr) → T | T + E

T (term) → F | F * T
F (factor) → n | (E)

+
+1

2 3

Reassociation

� Trick: rewrite right-recursive rules to use Kleene star:
E (expr) → T | T + E
becomes

E → T (+ T)* <--- “0 or more repetitions of + T”

� Recursion becomes a loop:

!16

public static Expr parseE() {
Expr e = parseT();

 while (peek() is “+”)) {
 consume(“+”);
 e = new BinaryOpNode(PLUS, e, parseT());

 }
 return e;

}

!17

Using a Parser to Generate Code
�We can modify the parser so

that it generates stack code to
evaluate arithmetic
expressions:

 2 PUSH 2
 STOP

(2 + 3) PUSH 2
 PUSH 3
 ADD
 STOP

�Goal: Modify parseE to return a
string containing stack code for
expression it has parsed

�Method parseE can generate
code in a recursive way:
§ For integer i, it returns string

“PUSH ” + i + “\n”
§ For (E1 + E2),

w Recursive calls for E1 and E2
return code strings c1 and c2,
respectively

w Return c1 + c2 + “ADD\n”
§ Top-level method appends a

STOP command

!18

Does Recursive Descent Always Work?
�No – some grammars cannot

be used with recursive descent
§ A trivial example (causes

infinite recursion):
S ::= b | Sa

�Can rewrite grammar
S ::= b | bA
A ::= a | aA

�Sometimes recursive descent
is hard to use
§ There are more powerful

parsing techniques (not
covered in this course)

�Nowadays, there are
automated parser and
tokenizer generators
§ you write down the grammar, it

produces the parser and tokenizer
automatically

§ Many based on LR parsing, which
can handle a larger class of
grammars.

!19

Exercises

Write a grammar and recursive-descent parser for

� palindromes:
mom dad I prefer pi race car
A man, a plan, a canal: Panama
murder for a jar of red rum sex at noon taxes

� strings of the form AnBn for some n ≥ 0:
AB AABB AAAAAAABBBBBBB

� Java identifiers:
a letter, followed by any number of letters or digits

� decimal integers:
an optional minus sign (–) followed by one or more digits 0-9

