
CS2112—Spring 2012
Homework 7 : Distributed and concurrent programming

Due: Saturday, May 5, 11:59PM

In this assignment you will make your critter simulation a distributed web application. Addi-
tionally, your project will reflect the critter’s accurate sense of smell when detecting nearest food
or plant.

In addition to implementing new functionality, you are expected to correctly complete any parts
of assignments 4–6 not implemented correctly earlier.

0 Changes

• April 27: removed the unsynchronized version of the ring buffer.

• May 1: Revised specs for the Server class. The authentication methods now return Remote

objects instead of strings. Since this is a late change, it is okay to implement the original
specs. The new specs should be easier to deal with, though.

• May 1: Due date extended until May 5.

1 Distributed Programming

For this part of the assignment, you should refactor your previous code into a client and a server.
The client will be a Java applet that provides views of and allows interactions with the world. The
server will simulate the world. Multiple clients will be able to connect to a single server.

1.1 Client

You will convert your previously-written GUI into a Java applet viewable through a web browser.
Your applet will support two views: the user view, and the admin view.

In the user view, the applet will visually render the simulation and provide options for uploading
and downloading critters. You will need to add support for the notion of species (critters with the
same program): users should be able to view a species’ attributes (length of memory, defense,
offense), its program, and its lineage (the species from which it evolved). The applet will also
provide an option for switching into the admin view.

CS2112 Spring 2012 1/6 Homework 7



In the admin view, the applet will provide several options for managing the simulation. The
administrator should be able to perform the following tasks:

• restart the simulation

• load a new world

• alter simulation parameters

• take control of single critters

• enable/disable critter uploads and downloads

• approve and manage user credentials

You may add additional functionality to the admin view. For example, you might support
broadcasting a message to all clients.

1.2 Server

The applet will communicate with the server via remote method invocation (RMI) calls to objects
on the server’s JVM. The server must be able to handle multiple clients concurrently. The server
should implement the released interfaces for compatibility.

The server will allow new user identities to be created through the admin interface. This is
useful because different users should have different rights in general. For example, if using the
simulation as a game, the users actually playing the game might be authorized to load new critters,
whereas other users would only be able to view the state of the game.

There will be three tiers of user credentials: view-only (no special authorization required),
users with permissions to load and control critters, and users with admin permissions.

User identities will have passwords so that users can authenticate themselves to the system
when they connect with a client. These passwords will be stored, along with the user identities, in
a file. It would be sensible to store the passwords in a salted-and-hashed form so they cannot be
read, but this is not required. Before starting your server, you should add at least one admin user
for your own use.

To run your server (which needs a main method that binds itself to the machine’s RMI registry),
you need to run start rmiregistry in a terminal first and provide this command-line argument:
-Djava.rmi.server.codebase=file:/PATH TO SRC ROOT.

2 Improved food sensing

As defined for HW6, the food sensor can lead to a false indication of the effort required to reach
food. Effectively, this is because critters currently can smell food through a rock wall. For instance,
Figure 1 illustrates an environment in which the critter is heading northeast. The closest food is
at distance 2 to the northwest (relative direction 4) according to the original spec. But because of
the rock wall, at least 12 moves are required to approach that food. Meanwhile, no obstacles stand

CS2112 Spring 2012 2/6 Homework 7



0

1

4

5

3

2

Figure 1: Finding food in a challenging environment

in the way of food #2 at distance 5. Figure 2 shows the distance from the critter to various hexes,
taking into account obstacles.

For this assignment, you will make food return information about how to get to the clos-
est food, taking into account obstacles in critters’ way. The formula for computing the result of
the food expression remains unchanged from the project specifications, except that distance and
direction are redefined. The distance is now the fewest number of moves to the hex containing
food, as long as it is no more than 10. The direction is still relative to the critter’s current orienta-
tion, but is now toward a hex that decreases the minimum number of moves to the food.

In the example, there are three plants at distance 5. Any of these could be chosen. To reduce
the distance to the closest food, the critter could move either north to get closer to foods 4 and 5,
or northeast to get closer to foods 2 and 4. The corresponding valid relative directions are 0 and 5.

Include your implementation approach and specify tiebreakers you use in the overview docu-
ment.

3 Randomness

The critter rule language has acquired a new expression: random[n]. It returns a random integer
in [0, n).

CS2112 Spring 2012 3/6 Homework 7



8

8

8

8

9

10

9

8

7

7

7

7

7

7

8

9

10

6

6

6

7

6

6

9

5

5

6

5

4

5

6

5

4

3

2

1

0

1

2

3

4

6

5

2

1

2

4

5

7

6

6

7

3

2

2

5

5

7

7

7

4

3

3

4

5

6

8

8

7

6

5

5

4

4

4

5

6

9

8

7

6

6

5

5

5

5

6

7

10

9

8

7

7

6

6

6

6

6

7

Figure 2: The fewest numbers of moves from the critter to various hexes

4 Synchronized ring buffers

Each RMI call from a client will spawn a new thread on the server, which can overwhelm the
server. One way to deal with this problem is for the server to provide a fixed number of threads
for handling client requests. The threads spawned by RMI calls place their requests into a queue
that the fixed set of threads draws its work from. This approach tends to keep the number of server
threads bounded.

To implement this approach, you will need a thread-safe queue similar to that described in the
interface java.util.concurrent.BlockingQueue. You are expected to build such a queue and
to use it in your server implementation.

You will implement your thread-safe queue as a ring buffer, a data structure commonly used in
distributed systems with limited memory. A ring buffer is a fixed size queue that is implemented
using an array and two integer indices. Items added to the queue are inserted to the array and the
tail index is incremented. If there is insufficient space in the array (as determined by comparing
the two indices), then adding to the queue fails. When items are popped from the queue, the item
in the slot indicated by the head index is returned and and the head is incremented.

We would like you to implement a thread-safe version of this data structure. It should im-
plement the java.util.concurrent.BlockingQueue interface. You are responsible for imple-
menting the methods listed below (all others should throw an UnsupportedOperationException).
You must use an array to implemenent this and are not allowed to use anything in the java.util

CS2112 Spring 2012 4/6 Homework 7



class. Your implementation should be used in the provided student.util.RingBufferFactory

class.
Required Methods
From Collections: add, contains, equals, isEmpty, iterator, size.
From Queue: all methods.
From BlockingQueue: all methods.

5 Tips

In order for your applet to have file-system access on the client side, the applet will need to be
signed with a certificate. This can be done as follows:

• Export the applet code to a jar file.

• Run keytool -genkey -alias YOURALIAS -keypass YOURKEYPASS in a terminal to gen-
erate your chosen alias and password.

• Run keytool -alias YOURALIAS -selfcert.

• Sign the jar by running jarsigner YOURJAR YOURALIAS

Testing concurrent code is very tricky because it never works the same way twice. To debug
your ring buffer implementation separately from the server code that uses it, it may be helpful
to plug in one of the existing thread-safe queue implementations already available in Java, then
replace it with your implementation once you are confident in the client code. The ring buffer
itself is also worth testing in isolation using a simple harness.

6 Edible karma

We will be identifying two projects: the one with the best GUI implementation, and the one with
the most correct and fastest world simulation. These two groups will receive special mention,
bragging rights, and gift certificates for dessert.

7 Restrictions

Do not include any files ending in .class. To make it easier for us to grade your assignments,
we expect you to stick to Java 6 features and avoid features found only in Java 7. It is easy to set
the project properties in Eclipse so that it warns you when Java 7 features are being used, and you
should do that.

CS2112 Spring 2012 5/6 Homework 7



8 Submission

As before, we are requiring you to submit an early draft of your design overview document. This
is due April 26.

By the homework due date (May 3), you should submit these files on CMS:

• Source code: You should include all source code required to compile and run the project.

• Other files: It is possible to use other files as part of your UI. For example, you might read in
image files or other data files that control appearance. You will supply a zip file containing
these files.

• Tests: You should include code or test scripts for all your test cases. Test scripts are scripts to
be followed when testing a system through its UI. A test script is preferable to just telling us
that you tested the system manually. You should have explicit test cases for any algorithms
and data structures that you implement.

• overview.txt/html/pdf: This file should contain your overview document.

CS2112 Spring 2012 6/6 Homework 7


	Changes
	Distributed Programming
	Client
	Server

	Improved food sensing
	Randomness
	Synchronized ring buffers
	Tips
	Edible karma
	Restrictions
	Submission

