

Find first occurrence of r in s (indexOf)
$/ * *=$ position of first occurrence of r in $\mathrm{s}(-1 \text { if not in) })^{* /}$
public static int find(String r, String $s)\{$
int $\mathrm{nr}=$ r.length(); int $\mathrm{ns}=$ s.length ()$;$
// inv: r is not in $\mathrm{s}[0 . . \mathrm{i}-1+\mathrm{nr}-1]$
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{ns}-\mathrm{nr} ; \mathrm{i}=\mathrm{i}+1)\{$
if (s.substring(i, $\mathrm{i}+\mathrm{nr}$). equals(r))
return i;
\} How much time does this take $\mathrm{O}(\mathrm{nr})$
return -1 ;
\} Executed how many times --worst case? $\mathrm{ns}-\mathrm{nr}+1$
Therefore worst-case time is $\mathrm{O}(\mathrm{nr} *(\mathrm{~ns}-\mathrm{nr}+1))$

$$
\mathrm{nr}=1: \mathrm{O}(\mathrm{~ns}) . \quad \mathrm{nr}=\mathrm{ns}: \mathrm{O}(\mathrm{~ns}) . \quad \mathrm{nr}=\mathrm{ns} / 2: \mathrm{O}(\mathrm{~ns} * \mathrm{~ns})
$$

Readings, Homework

Issues

1. How to look at a program and calculate, formally or informally, its execution time.
2. Determine whether some function $f(n)$ is $O(g(n))$

Worst case for selection / insertion sorts

Dealing with nested loops

```
int c = 0;
                for (int k= i; k < n; k++) c= c+1;
            } Loop is executed n/2 times, with i= 0, 1,2,\ldots,n-1
                    It has n-i iterations. That's }1+2+\ldotsn=n*(n+1)/2 its
            else{That's O(n*n*n)
                for (int h=0;h<j;h++)c=c+1;
            }
    }
}
```

for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) \{ $\quad \mathrm{n}$ iterations
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) \{ $\quad \mathrm{n}$ iterations
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) \{ n iterations
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) \{ n iterations
if $((\mathrm{j} \% 2)=0)$ \{ True $\mathrm{n} * \mathrm{n} / 2$ times
if $((\mathrm{j} \% 2)=0)$ \{ True $\mathrm{n} * \mathrm{n} / 2$ times
if $((\mathrm{j} \% 2)=0)\{$

```
}
```

Dealing with nested loops	
```int \(\mathrm{i}=0\); int \(\mathrm{c}=0\); while \((\mathrm{i}<\mathrm{n})\) \{ int \(k=i\); What is the execution time? while \((\mathrm{k}<\mathrm{n} \& \& \mathrm{~b}[\mathrm{k}]==0)\{\) \(\mathrm{c}=\mathrm{c}+1 ; \mathrm{k}=\mathrm{k}+1\); \} It is \(\mathrm{O}(\mathrm{n})\). It looks at Each element of \(\mathrm{b}[0 . . \mathrm{n}-1]\) \(\mathrm{i}=\mathrm{k}+1\); ONCE.```	

## Using Big-O to Hide Constants

$$
\begin{aligned}
& \text { We say } \mathrm{f}(\mathrm{n}) \text { is order of } \mathrm{g}(\mathrm{n}) \\
& \text { if } \mathrm{f}(\mathrm{n}) \text { is bounded by a constant times } \mathrm{g}(\mathrm{n})
\end{aligned}
$$

Notation: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$
Roughly, $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$ ) means that $\mathrm{f}(\mathrm{n})$ grows like $\mathrm{g}(\mathrm{n})$ or slower, to within a constant factor
"Constant" means fixed and independent of $n$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c$ and $N$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

## Big-O Examples

$$
\begin{array}{ll}
\begin{array}{l}
\text { Let } f(n)=3 n^{2}+6 n-7 \\
\text { Prove that } f(n) \text { is } O\left(n^{2}\right)
\end{array} & 3 n^{2}+6 n-7<=c n^{2} \text { ? } \\
& \text { What } \mathrm{c} \text { ? what } \mathrm{N} \text { ? } \\
& \\
<3 n^{2}+6 n-7 & \text { For } \mathrm{n}>=1, \mathrm{n}<=n^{2} \\
<=3 n^{2}+6 n & \\
=9 n^{2}+6 n^{2} \text { for } \mathrm{n}>=1 & \\
\text { Choose } \mathrm{N}=1 \text { and } \mathrm{c}=9
\end{array}
$$

$f(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants c and N such that for all $n \geq N, f(n) \leq c \cdot g(n)$

## Big-O Examples

```
Let f(n)=3n}\mp@subsup{n}{}{2}+6n-
Prove that f(n) is O(n}\mp@subsup{n}{}{3}
```

	So, $f(n)$ is   $O\left(n^{2}\right) O\left(n^{3}\right), O\left(n^{4}\right), \ldots$
$<3 n^{2}+6 n-7$	
$<=3 n^{2}+6 n$	
$=9 n^{2}+6 n^{2}$ for $\mathrm{n}>=1$	
$<=9 n^{2} \quad$ for $\mathrm{n}>=1$	
Choose $\mathrm{N}=1$ and $\mathrm{c}=9$	

$f(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants c and N such that for all $n \geq N, f(n) \leq c \cdot g(n)$


## Big-O Examples

For quicksort in best case, i.e. two partitions are same size.
$T(0)=1$
$T(1)=1$
$T(n)=K * n+2 * T(n / 2) \quad / /$ The $K n$ is to partition array
$\mathrm{T}(0)=\mathrm{K} \quad / /$ Simplify computation: assume $\mathrm{K}>1$
$\mathrm{T}(1)=\mathrm{K} \quad / /$ And use K instead of 1
$\mathrm{T}\left(2^{\wedge} 1\right)=\mathrm{T}(2)=2 \mathrm{~K}+2 \mathrm{~K}=4 \mathrm{~K}$
$\mathrm{T}\left(2^{\wedge} 2\right)=\mathrm{T}(4)=4 \mathrm{~K}+2(4 \mathrm{~K})=12 \mathrm{~K}=3^{*}\left(2^{\wedge} 2\right) \mathrm{K}$
$\mathrm{T}\left(2^{\wedge} 3\right)=\mathrm{T}(8)=8 \mathrm{~K}+2(12 \mathrm{~K})=32 \mathrm{~K}=4 *\left(2^{\wedge} 3\right) \mathrm{K}$
$\mathrm{T}\left(2^{\wedge} 4\right)=\mathrm{T}(16)=16 \mathrm{~K}+2(32 \mathrm{~K})=80 \mathrm{~K}=5^{*}\left(2^{\wedge} 4\right) \mathrm{K}$
$\mathrm{T}\left(2^{\wedge} \mathrm{n}\right)=(\mathrm{n}+1)^{*}\left(2^{\wedge} \mathrm{n}\right)^{*} \mathrm{~K} \quad \mathrm{~T}(\mathrm{~m})=\log (2 \mathrm{~m})^{*} \mathrm{~m} * \mathrm{~K}$

