
4/9/14

1

ASYMPTOTIC COMPLEXITY
CS2111
CS2110 – Fall 2014

1

Readings, Homework

Issues
1.  How to look at a program and calculate, formally

or informally, its execution time.
2.  Determine whether some function f(n) is O(g(n))

2

Worst case for selection / insertion sorts

3

Selection sort b[0..n-1]
//inv b[0..i-1] sorted, b[0..i-1] <= b[i..n-1]
for (int i= 0; i < n; i= i+1) {
 int j= pos of min of b[i..n-1];
 Swap b[i] and b[j]
}

Insertion sort b[0..n-1]
//inv: b[0..i-1] sorted
for (int i= 0; i < n; i= i+1) {
 Push b[i] down to its sorted;
 position in b[0..i]
}

Count swaps?

Iteration i requires 1 swap.
Total of n

Iteration i requires i swaps.
Total of 0 + 1 + … n-1 =
(n-1) n / 2

Number of swaps is not the
thing to count!

Worst case for selection / insertion sorts

4

Selection sort b[0..n-1]
//inv b[0..i-1] sorted, b[0..i-1] <= b[i..n-1]
for (int i= 0; i < n; i= i+1) {
 int j= pos of min of b[i..n-1];
 Swap b[i] and b[j]
}

Insertion sort b[0..n-1]
//inv: b[0..i-1] sorted
for (int i= 0; i < n; i= i+1) {
 Push b[i] down to its sorted;
 position in b[0..i]
}

Count array element comparisons

ALWAYS n-i comparisons
Total of (n-1) n / 2

Iteration i requires i comparisons
in worst case, 1 in best case.
Total of 0 + 1 + … n-1 =
(n-1) n / 2 (worst case)

Find first occurrence of r in s (indexOf)
5

/** = position of first occurrence of r in s (-1 if not in) */
public static int find(String r, String s) {
 int nr= r.length(); int ns= s.length();
 // inv: r is not in s[0..i-1+nr-1]
 for (int i= 0; i < ns – nr; i= i+1) {
 if (s.substring(i, i+nr).equals(r))
 return i;
 }
 return -1;
}

How much time does this take O(nr)

Executed how many times --worst case? ns – nr + 1

Therefore worst-case time is O(nr *(ns –nr + 1))

nr = 1: O(ns). nr = ns: O(ns). nr = ns/2: O(ns*ns)

Dealing with nested loops

int c = 0;
for (int i= 0; i < n; i++) {
 for (int j= 0; j < n; j++) {
 if ((j % 2) == 0) {
 for (int k= i; k < n; k++) c= c+1;
 }

 else {
 for (int h= 0; h < j; h++) c= c+1;
 }
 }
}

6

n iterations
n iterations
True n*n/2 times

Loop is executed n/2 times, with i = 0, 1, 2, …, n-1
It has n-i iterations. That’s 1 + 2 + … n = n*(n+1)/2 its.
 That’s O(n*n*n)

4/9/14

2

Dealing with nested loops

int i= 0; int c= 0;
while (i < n) {
 int k= i;
 while (k < n && b[k] == 0) {
 c= c+1; k= k + 1;
 }
 i= k+1;
}

7

What is the execution time?

It is O(n). It looks at
Each element of b[0..n-1]
ONCE.

Using Big-O to Hide Constants

We say f(n) is order of g(n)
if f(n) is bounded by a constant times g(n)

Notation: f(n) is O(g(n))

Roughly, f(n) is O(g(n)) means that f(n) grows like g(n)
or slower, to within a constant factor

"Constant" means fixed and independent of n

8

Formal definition: f(n) is O(g(n)) if there exist constants
c and N such that for all n ≥ N, f(n) ≤ c·g(n)

A Graphical View

9

To prove that f(n) is O(g(n)):
¤  Find N and c such that f(n) ≤ c g(n) for all n > N
¤  Pair (c, N) is a witness pair for proving that f(n) is O(g(n))

c·g(n)

f(n)

N

9

Big-O Examples
10

Let f(n) = 3n2 + 6n – 7
Prove that f(n) is O(n2)

f(n) is O(g(n)) if there exist constants c and N such that
for all n ≥ N, f(n) ≤ c·g(n)

3n2 + 6n – 7 <= c n2 ?

What c? what N?

For n >= 1, n <= n2

 3n2 + 6n – 7
< 3n2 + 6n
<= 3n2 + 6n2 for n >= 1
= 9n2

Choose N = 1 and c = 9

Big-O Examples
11

Let f(n) = 3n2 + 6n + 7
Prove that f(n) is O(n2)

f(n) is O(g(n)) if there exist constants c and N such that
for all n ≥ N, f(n) ≤ c·g(n)

3n2 + 6n + 7 <= c n2 ?

What c? what N?

For n >= 1, n <= n2

 3n2 + 6n + 7
<= 3n2 + 6n2 + 7 for n >= 1
= 9n2 + 7
<= 9n2 + n2 for n >= 7
= 10n2

Choose N = 7 and c = 10

Big-O Examples
12

Let f(n) = 3n2 + 6n - 7
Prove that f(n) is O(n3)

f(n) is O(g(n)) if there exist constants c and N such that
for all n ≥ N, f(n) ≤ c·g(n)

 3n2 + 6n – 7
< 3n2 + 6n
<= 3n2 + 6n2 for n >= 1
= 9n2
<= 9n3 for n >= 1

Choose N = 1 and c = 9

So, f(n) is
O(n2) O(n3), O(n4), …

4/9/14

3

Big-O Examples
13

T(0) = 1
T(n) = 2 * T(n-1)
Give a closed formula (no recursion) for T(n)

T(0) = 1
T(1) = 2
T(2) = 4
T(3) = 8

One idea:
Look at all small
cases and find a

pattern
T(n) = 2^n

Big-O Examples
14

For quicksort in best case, i.e. two partitions are same size.
T(0) = 1
T(1) = 1
T(n) = K*n + 2 * T(n/2) // The Kn is to partition array

T(0) = K //Simplify computation: assume K > 1
T(1) = K // And use K instead of 1
T(2^1) = T(2) = 2K + 2K = 4K
T(2^2) = T(4) = 4K + 2(4K) = 12K = 3*(2^2)K
T(2^3) = T(8) = 8K + 2(12K) = 32K = 4*(2^3)K
T(2^4) = T(16) = 16K + 2(32K) = 80K = 5*(2^4)K

T(2^n) = (n+1)*(2^n)*K T(m) = log(2m)*m*K

