ASYMPTOTIC COMPLEXITY

Worst case for selection / insertion sorts

Selection sort b[0..n-1]
//inv b[0..i-1] sorted, b[0..i-1] <= b[i..n-1]
for (inti= 0; i <n; i=i+1) {

int j= pos of min of b[i..n-1];

Swap b[i] and b[j]

Count swaps?

Iteration i requires 1 swap.

Insertion sort b[0..n-1] Total of n

//inv: b[0..i-1] sorted

for (inti=0; i <n;i=i+1) {
Push b[i] down to its sorted,;
position in b[0..i]

Number of swaps is not the
thing to count!

Tteration i requires i swaps.
, Total of 0+ 1 +...n-1=
(n-1)n/2

Find first occurrence of rins (indexOf)

/** = position of first occurrence of r in s (-1 if not in) */
public static int find(String r, String s) {
int nr= r.length(); int ns= s.length();
// inv: r is not in s[0..i-14+nr-1]
for (int i= 0; i <ns —nr; i= i+1) {
if (s.substring(i, i+nr).equals(r))

return i; . .
) How much time does this take ~ O(nr)
return -1;)
} Executed how many times --worst case? ns—nr+ 1

Therefore worst-case time is O(nr *(ns —nr + 1))

nr =1:O(ns). nr=ns: O(ns). nr =ns/2: O(ns*ns)

Readings, Homework

Issues
1. How to look at a program and calculate, formally
or informally, its execution time.

2. Determine whether some function f(n) is O(g(n))

Worst case for selection / insertion sorts

Selection sort b[0..n-1] Count array element comparisons

//inv b[0..i-1] sorted, b[0..i-1] <= b[i..n-1]
for (inti= 0; i <n; i=i+1) {
int j= pos of min of b[i..n-1];
Swap b[i] and b[j] ALWAYS n-i comparisons
Total of (n-1)n/2

Insertion sort b[0..n-1]

//inv: b[0..i-1] sorted

for (inti=0; i <n;i=i+1) {
Push b[i] down to its sorted;
position in b[0..i]

}

Iteration i requires i comparisons
in worst case, 1 in best case.
Total of 0+ 1 + ... n-1=

(n-1) n /2 (worst case)

Dealing with nested loops

intc=0;
for (int i= 0; i <n; it+) {
for (int j=0; j <n; j++) {
i (% 2)==0) {
for (int k=1i; k <n; k++) c=c+l;
} Loop is executed n/2 times, withi=0, 1, 2, ..., n-1

n iterations
n iterations

True n*n/2 times

It has n-i iterations. That’s 1 +2 + ... n =n*(n+1)/2 its.

2, Kk
else { That’s O(n*n*n)

for (int h=0; h <j; h++) c=c+1;

4/9/14

Dealing with nested loops

int i= 0; int c=0;

while (i <n) {
What is the execution time?

int k= i;
while (k <n && b[k]==0) {
c=ctl; k=k+1; .
It is O(n). It looks at
} Each element of b[0..n-1]
i=k+1; ONCE.

Using Big-O to Hide Constants

We say f(n) is order of g(n)
if f(n) is bounded by a constant times g(n)

Notation: f(n) is O(g(n))

Roughly, f(n) is O(g(n)) means that f(n) grows like g(n)
or slower, to within a constant factor

"Constant" means fixed and independent of n

Formal definition: f(n) is O(g(n)) if there exist constants
cand N such thatforalln =N, f(n)<c-g(n)

A Graphical View

N
To prove that f(n) is O(g(n)):
Find N and c such that f(n) < c g(n) for alln >N
Pair (¢, N) is a witness pair for proving that f(n) is O(g(n))

Big-O Examples

Let f(n) = 3n2+ 6n-7

3n2+6én-7 <= cn? 2
Prove that f(n) is O(n?)

What ¢2 what N2

3n2+6n-7 Forn>=1, n<=n?
< 3n’+6n
<= 3n2+6n% forn>=1
- 9n2

Choose N=1andc=9

f(n) is O(g(n)) if there exist constants ¢ and N such that
foralln =N, f(n)<c-g(n)

Big-O Examples

Let f(n) = 3n2 + 6n +7

3n2+6n+7 <= cn? 2
Prove that f(n) is O(n?)

What c2 what N2

3n2+6n+7
<= 3n2+6n*+7 forn>=1 Forn>=1, n<=n®
= 9n2+7
<= 9n?+n? forn>=7
= 10n?

Choose N=7and ¢ =10

f(n) is O(g(n)) if there exist constants ¢ and N such that
foralln =N, f(n)<c-g(n)

Big-O Examples

Let f(n) = 3n2 + 6n -7
Prove that f(n) is O(n®)
So, f(n) is

O(n?) O(n%), O(n?), ...
3n2 +6n—7 thalicAnzhic il

< 3n’+6n

<= 3n2+6n? forn>=1
= 9p2

<= 9n? forn >= 1

Choose N=1andc=9

f(n) is O(g(n)) if there exist constants ¢ and N such that
foralln =N, f(n)<c-g(n)

4/9/14

Big-O Examples

T(0)=1
T(n) = 2 * T(n-1)
Give a closed formula (no recursion) for T(n)

T(0) " 1 One idea:

T(1) - 2 Look at all small

T(2) - 4 cases and find a

T3)=8 pattern
T(n) =2"n

Big-O Examples

For quicksort in best case, i.e. two partitions are same size.
T(0)=1
T =1
T(n) = K*n +2*T(n/2) // The Kn is to partition array

T(0)=K //Simplify computation: assume K > 1
T(1)=K // And use K instead of 1
T2")=T(2) =2K+2K=4K

T(2"2) =T(4) =4K+2(4K)= 12K =3*(2"2)K
T(2"3) =T(8) = 8K +2(12K) = 32K =4*(2"3)K
T(2"4) =T(16) = 16K + 2(32K) = 80K = 5*(2"4)K

T@M) = (n+1)*2*n)*K T(m) = log(2m)*m*K

4/9/14

