
7/19/2024

1

DFS Pseudocode

Mark start as discovered

For each successor of start:
If successor is undiscovered 

Visit successor (recursive call)
Mark start as settled

• Exhaustively search starting from 
one neighbor before moving on 
to next neighbor

1

7

2

5

3

4

6
8

Discovery, visitation, settlement

• A vertex is discovered when it is 
first encountered as a neighbor 
of another vertex

• A vertex is being visited while its 
neighbors are iterated over

• May visit other vertices during a 
visit

• A vertex is settled after it has 
been visited

• Implies all neighbors have been 
discovered

• In recursive DFS, nodes are 
discovered and visited in the 
same order, but settlement
order is different

• May not settle until neighbors 
have been visited

• Settlement order is not reverse 
visitation order

1

2



7/19/2024

2

Topological order

A topological order of directed graph G is an ordering of its nodes as v1, 
v2, …, vn, such that for every edge (vi, vj), it holds that i < j.

2110

2800

3110

3410 4410

48201110

Intuition: line up the nodes with all edges pointing left to right.

Other applications: robot planning, job scheduling, compilers

Approach 2: DFS insight

F

B

A

C

D

E

Mark start as discovered

For each successor of start:
If successor is undiscovered 

Visit successor (recursive call)
Else if successor is not settled

Cycle detected!
Mark start as settled
Prepend to topological order

3

4



7/19/2024

3

Quick Warmup (Unweighted shortest paths)

Fill in the frontier queue and the 
vertex layers starting at s.

This time, also store the 
predecessor (the node that you 
discovered the node from).

s d
b

a c

Frontier queue

s

Vertex state
dcbasVertex

0Layer

Pred

Weighted shortest paths example

DistanceVertex

CLA

BRA

SAM

FOS

4 1

4

DistanceVertex

0CLA

Best known path Best possible path

5

6



7/19/2024

4

When do we know that a path is the shortest 
possible?
• Shortest path to any undiscovered 

vertex must be longer than the 
smallest candidate path to a vertex 
in the frontier

• Therefore, the smallest candidate 
path in the frontier must be the 
shortest possible path to that 
vertex

• Any new path discovered in the 
future must go through a vertex 
currently in the frontier and would 
therefore be longer

e d
b

4

a c

1

2

6

1

1
7

edcbaVertex

0Dist

nullPred

Frontier

a

Vertex state

Exercise: Tracing Dijkstra’s algorithm
start.discovered = true;

start.dist = 0;

frontier.add(start, start.dist);

while (!frontier.isEmpty()) {

Vertex v = frontier.removeMin();

for (Edge e : v.outgoing) {

Vertex neighbor = e.to;

double dist = v.dist + e.weight;

if (!neighbor.discovered || dist < neighbor.dist) {

neighbor.discovered = true;

neighbor.dist = dist;

frontier.addOrUpdate(neighbor, dist);

}

}

}

e d
b

4

a c

1

2

6

1

1
7

edcbaVertex

0Dist

nullPred

Frontier (priority queue)

a

Vertex state

7

8


