
CS 2110
Lecture 5
Interfaces, subtyping,
polymorphism

Coming up

A2 is Released

A1 will be graded soon

Test 1 is Tomorrow (I’ll end with what
to prep for Test1)

A2 Logistics and Test1 Prep

● Please start A2, Also if you’re working alone and haven’t talked to
me about working with a partner. Please find a partner ASAP

● Test1 Prep and Expectations
○ Exactly the same style of questions as the prelims in the previous years
○ Topics are obviously adapted to what we covered here last week
○ Format is hard to predict exactly

JUnit

• JUnit assertions != Java assert statements
• assertEquals()
• assertTrue() / assertFalse()

• Argument order: expected, then actual

• Floating-point is tricky (see comment in A1Test)

Terms So Far

● Java syntax specific
● this
● final
● static
● main
● class
● void
● public/private/protected
● Junit Test related terms
● extends

● Concepts
● Value/Reference Semantics
● Primitive/Class Types
● Specifications/Invariants
● Constructors/Getters/Setters
● Scope
● Casting
● Testing- Black Box/Glass Box
● OOP - Inheritance and

Polymorphism

Inheritance

• Inheritance in Java is the method to create a hierarchy between
classes by inheriting from other classes.

• It is basically a method to establish relationships between
classes.

DRY principle: Don’t repeat
yourself

• Duplicated code is not just tedious to write (or
copy-paste) the first time

• To fix a bug in duplicated code, must find all instances

• Modifications that aren’t repeated everywhere lead to deviation in
“common” behavior

• OOP languages can help you avoid duplication

Consequences of this

● Avoid code reduplication
● Subtype Polymorphism, Interface Polymorphism
● Allows for the expression of variations in behaviour

● Defining inheritance hierarchies is basically a modelling
problem

Interface Polymorphism

Interfaces allow us to define polymorphism in a declarative
way, unrelated to implementation
What is an interface?

What this looks like in Java
Interfaces are basically like contracts

What this looks like in Java
Here’s another way of doing the exact same thing

Polymorphism (SubTyping)

Variations in behavior

• The Interval interface abstracted over state, but both
implementations behaved identically. We just saw an example of this.

• Sometimes, behavior specifications leave room for variation

• Example: chess pieces

Chess piece interface

public interface Piece {

 /** Return whether this piece is able to move to
 * location (`dstRow`, `dstCol`) from its current
 * position, given board config. `board`. */

 boolean legalMove(int dstRow, int dstCol,
 Board board);

}

Chess board interface

public interface Board {

 /** Return 0 if position (`row`, `col`) is empty,
 * 1 if occupied by a white piece, 2 if occupied
 * by a black piece. */

 int playerAt(int row, int col);

}

Type hierarchy

•Pawn <: Piece
•Knight <: Piece
•Bishop <: Piece
•Rook <: Piece
•Queen <: Piece
•King <: Piece

Piece

Pawn

Knight

Bishop Rook

Queen

King

Knight

public class Knight
 implements Piece {

 private int row;

 private int col;

 private int player;

 @Override

 public boolean legalMove(
 int dstRow,
 int dstCol,
 Board board) {

int dx = abs(row–dstRow);

int dy = abs(col–dstCol);

return board.playerAt(
 dstRow, dstCol)!=player
 && ((dx==1 && dy==2) ||
 (dx==2 && dy==1));

}}

King

public class King
 implements Piece {

 private int row;

 private int col;

 private int player;

 private boolean hasMoved;

 @Override

 public boolean legalMove(
 int dstRow
 int dstCol,
 Board board) {

int dx = abs(row–dstRow);

int dy = abs(col–dstCol);

return board.playerAt(
 dstRow, dstCol)!=player
 && (dx <= 1 && dy <= 1
 || !hasMoved &&
 canCastle(board));

}}

Object diagram

Piece pickNextPiece() {…}
// ...
Piece p;
while (!gameOver) {
 p = pickNextPiece();
 // assign r, c
 if (p.legalMove(r, c)) {
 // ...
 }
}

p: Piece

...

Pawn

...

King

...

Knight

Static vs. dynamic type

• While the program is running, the type of the object referenced by p
could change, but it will always be a subtype of Piece

• Static type: types declared for variables & return values, derived for
expressions (compile-time)

• Dynamic type: the type of an object being referenced (runtime)

• Behavior is determined by dynamic type
• “Dynamic dispatch”

Compile-time reference rule

• Client can only request behavior supported by the static type

• It is possible to ask about the dynamic type of an object and cast the
reference so that additional behavior is available, but this is usually
not good OOP practice

• instanceof

• Example next time: equals()

Commonality beyond interfaces

• Interfaces guarantee availability of behaviors

•What if types have similar state? Identical behaviors?

• Interfaces can’t provide fields or method bodies that depend on fields

• Subclasses allow a derived class to inherit fields and method bodies from
a parent class

• class Derived extends Parent {…}

• Implies a subtype relationship: Derived <: Parent

Piece as a superclass

public class Piece {

 private int row;

 private int col;

 private int player;

 public Piece(int row,
 int col, int player) {

 this.row = row;

 this.col = col;

 this.player = player;

}

 public int player() {

 return player;

 }

 public boolean legalMove(
 int dstRow, int dstCol,
 Board board) {…}

}

King as a subclass

public class King
 extends Piece {

 private boolean hasMoved;

 public King(int player) {

 super((player==1)?0:7,
 3, player);

 hasMoved = false;

 }

 @Override

 public boolean legalMove(
 int dstRow
 int dstCol,
 Board board) {…}

}

Accessibility

• Subclasses cannot see private
members of parent class

• Is this a concern?

• “Specialization interface”: in
what ways can subclasses tweak
the behavior of a parent?

• Another layer of
encapsulation

• private (“don’t mess with my invariants”)

• Parent class has exclusive responsibility

• protected (“I’m trusting you”)

• Derived classes have rights and
responsibilities

• public
• The “client interface” is also usable by

derived classes

Constructors

• Since some state could be private,
subclass must call a parent class
constructor

• Invoked using super()

• Must be first statement in
subclass constructor

•Delegation order: fully
construct superclass, then
specialize

Overriding

• A subclass method with the same signature as
a parent class method will override it

• Whenever that method is invoked on the
object, the subclass version will be
executed

• Consequence of dynamic dispatch

• Impossible for client to request a parent
implementation

• Only subclass impl could know about all
the relevant invariants

• Subclass may delegate to its parent’s
implementation

• @Override
public void move(int r,
 int c) {
 super.move(r, c);
 checkPromotion();
}

• No way to prefer “grandparent’s”
implementation

OOP terms chart

● extends
● interface / implements
● @override
● public/private/protected
● super

● Interface
● Encapsulation
● Interface/Subtype

Polymorphism
● Inheritance
● Compile time reference rule
● Dynamic dispatch

Object

•All classes are a subtype of Object

• If no extends clause, then
Object is the superclass

• Interfaces implicitly must be
implemented by an Object

•Object provides useful universal
methods that you may want to
override

• toString()
• equals()
• hashCode()

Equality

Referential equality (identity)

• Are two objects the same object?

• Test using ==

Logical equality (state)

• Should two objects be considered
equivalent (substitutable)?

•Override equals() to define
separately from identity

•Danger if class is mutable

Equivalence relations

• Reflexive

• You equal yourself

• Symmetric

• If you equal someone, they equal you

• Transitive

• If you equal someone and they equal someone else, you also equal that someone
else

Overriding .equals()

@Override

public boolean equals(Object other) {

 if (!(other instanceof Point)) {

 return false;

 }

 Point p = (Point) other;

 return x == p.x && y == p.y;

}

