CS 2110
Lecture 5

Interfaces, subtyping,
polymorphism

A2 is Released

Al will be graded soon
Coming up

Test 1 is Tomorrow (I'll end with what
to prep for Test1)

A2 Logistics and Test1 Prep

o Please start A2, Also if you’re working alone and haven’t talked to
me about working with a partner. Please find a partner ASAP

o Testl Prep and Expectations
o Exactly the same style of questions as the prelims in the previous years
o Topics are obviously adapted to what we covered here last week
o Format is hard to predict exactly

JUnit

* JUnit assertions !=Java assert statements
* assertEquals()
» assertTrue() /assertFalse()

* Argument order: expected, then actual

* Floating-point is tricky (see comment in AlTest)

Terms So Far

e Java syntax specific

this

final

static

main

class

void
public/private/protected
Junit Test related terms
extends

e Concepts

Value/Reference Semantics
Primitive/Class Types
Specifications/Invariants
Constructors/Getters/Setters
Scope

Casting

Testing- Black Box/Glass Box
OOP - Inheritance and
Polymorphism

Inheritance

* Inheritance in Java is the method to create a hierarchy between
classes by inheriting from other classes.

* |t is basically a method to establish relationships between
classes.

Relationships

« Java only supports single
inheritance
e Only one superclass
« Reserve for “is-a” relationship

 Classes may implement multiple
interfaces

« “Can-do” relationship

Object

Student

Named

Meelection at the end -add
S _ob.select= 1
#er_ob.select=1
#ntext.scene.objects.activg
M "Selected” + str(modifier 8
#irror_ob.select = 0
bpy.context.selected_ob)
._.ta.objects[one.name].Sl' .

please select exacthy "%

print(”

_ OPERATOR CLASSES -=~

DRY principle: Don’t repeat
yourself

* Duplicated code is not just tedious to write (or
copy-paste) the first time

® To fix a bug in duplicated code, must find all instances

® Modifications that aren’t repeated everywhere lead to deviation in
“common” behavior

® oop languages can help you avoid duplication

Consequences of this

e Avoid code reduplication
e Subtype Polymorphism, Interface Polymorphism
o Allows for the expression of variations in behaviour

o Defining inheritance hierarchies is basically a modelling
problem

Interface Polymorphism

Interfaces allow us to define polymorphism in a declarative
way, unrelated to implementation

What is an interface?

What this looks like in Java

Interfaces are basically like contracts

Point

shift(dx dy) {
at ares() { }

isInsideBox() {

What this looks like in Java

Here’s another way of doing the exact same thing

shift(dx dy) {
at ares() { }

isInsideBox() {

Polymorphism (SubTyping)

Variations in behavior

* The Interval interface abstracted over state, but both
implementations behaved identically. We just saw an example of this.

* Sometimes, behavior specifications leave room for variation
* Example: chess pieces

b uf -
-
P> o> -
> E -
P i o
[T
L
b= [Nf -

- N w - w, (=2} -~ [=-]

o LHC>
= 03
o [AC>
a[gg[;;,
o [AC>
‘"01@’[33'
@[9[;3
= B L3

L I " B~ &) B = B N v - |

Chess piece interface

public interface Piece {

/** Return whether this piece is able to move to
* location ("dstRow , "dstCol’) from its current
* position, given board config. "board . */

boolean legalMove(int dstRow, int dstCol,
Board board);

Chess board interface

public interface Board {

/** Return @ if position (row , "col) is empty,
* 1 if occupied by a white piece, 2 if occupied
* by a black piece. */

int playerAt(int row, int col);

Type hierarchy

* Pawn <: Piece Piece
*Knight <: Piece
*Bishop <: Piece
*Rook <: Piece
*Queen <: Piece
King <: Piece

Bishop Rook

Knight

public class Knight
implements Piece {

private row;
private col;
private player;
@Override

public legalMove(
dstRow,
dstCol,
board) {

dx = abs(row-dstRow);
dy = abs(col-dstCol);

return board.playerAt(
dstRow, dstCol)!=player
&& ((dx==1 && dy==2) ||
(dx==2 && dy==1));

}}

King

public class King dx = abs(row-dstRow);
implements Piece { dy = abs(col-dstCol);
private FOW,; return board.playerAt(
private col; dstRow, dstCol)!=player
private player; &?l(?ﬁa;;oéeg&&gy <=1
private hasMoved; canCastle(board));
@Override 13}
public legalMove(
dstRow
dstCol,

board) {

Object diagram
pickNextPiece() {...}

o
while (!gameOver) {
p = pickNextPiece();

if (p.legalMove(r, c)) {

¥
¥

p-

Static vs. dynamic type

* While the program is running, the type of the object referenced by p
could change, but it will always be a subtype of Piece

: types declared for variables & return values, derived for
expressions (compile-time)

: the type of an object being referenced (runtime)

* Behavior is determined by dynamic type
* “Dynamic dispatch”

Should client be able to call “p.canCastle()” when the dynamic type of the object referenced by
Piece p is a King?

Yes

0% '
No

0% '

Only if they know more than the compiler

0% '

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Compile-time reference rule

* Client can only request behavior supported by the type

* |t is possible to ask about the dynamic type of an object and cast the
reference so that additional behavior is available, but this is usually
not good OOP practice

* instanceof
* Example next time: equals()

Commonality beyond interfaces

® Interfaces guarantee availability of behaviors

® What if types have similar state? Identical behaviors?

® Interfaces can’t provide fields or method bodies that depend on fields

® Subclasses allow a derived class to inherit fields and method bodies from
a parent class

®class Derived extends Parent {...}

® Implies a subtype relationship: Derived <: Parent

Piece as a superclass

public class Piece { public int player() {
private int row; return player;
private int col; }

private int player;

public boolean legalMove(
int dstRow, int dstCol,

public Piece(int row,
int col, int player) { Board board) {...}

this.row = row;
this.col = col;
this.player = player;

King as a subclass

public class King @Override
s Plece { public legalMove(
private hasMoved; dstRow
dstCol,
public King(player) { board) {...}
}

super((player==1)70:7,
3, player);

hasMoved = false;

Accessibility

® Subclasses cannot see private ® private (“don’t mess with my invariants”)
members of parent class ® Parent class has exclusive responsibility
® |s this a concern? ® protected (“I'm trusting you”)

® Derived classes have rights and

® « T . . ”,
Specialization interface”: in responsibilities

what ways can subclasses tweak

the behavior of a parent? ® public

o ® The “client interface” is also usable by
Another Iayer of derived classes

encapsulation

Constructors

® Since some state could be private, ® Delegation order: fully

subclass must call a parent class construct superclass, then

constructor Specialize
® Invoked using super()

e Must be first statement in
subclass constructor

Overriding

® A subclass method with the same signature as ® Subclass may delegate to its parent’s

a parent class method will override it implementation
® Whenever that method is invoked on the ® @Override
object, the subclass version will be public void move(r,
executed c) {
super.move(r, c);
® Consequence of dynamic dispatch } checkPromotion();

® Impossible for client to request a parent

[] 1% 7]
implementation No way to prefer “grandparent’s

implementation
® Only subclass impl could know about all

the relevant invariants

OQOP terms chart

extends

interface / implements
@override
public/private/protected
super

Interface

Encapsulation
Interface/Subtype
Polymorphism

Inheritance

Compile time reference rule
Dynamic dispatch

Object

® All classes are a subtype of Object ® Object provides useful universal

methods that you may want to
override

®* toString()

® If no extends clause, then
Object is the superclass

® Interfaces implicitly must be .
implemented by an Object equals()

®* hashCode()

Equality

Referential equality (identity)

® Are two objects the same object?

® Test using ==

Logical equality (state)

® Should two objects be considered
equivalent (substitutable)?

® Override equals() to define
separately from identity

® Danger if class is mutable

Equivalence relations

® Reflexive

® You equal yourself

® Symmetric

® If you equal someone, they equal you

® Transitive

® If you equal someone and they equal someone else, you also equal that someone
else

Overriding .equals()

@Override
public equals(other) {
if (!(other instanceof Point)) {
return false;

p = (Point) other;
return X == p.X && y == p.y;

