
Search
Algorithms

Linear Search

Key idea: search linearly through array from front to back to find
item

/** Returns: the smallest index i such that a[i] == v.
 Requires: v is in a. */
int linear_search(int[] a, int v) {
 int i = 0;

 while (a[i] != v) i++;
 return i;
}

Exercise

State the loop invariant.

/** Returns: the smallest index i such that a[i] == v.
 Requires: v is in a. */
int linear_search(int[] a, int v) {
 int i = 0;
 // inv: TODO
 while (a[i] != v) i++;
 return i;
}

Discovering the loop invariant

/** Returns: the smallest index i such that a[i] == v.
 Requires: v is in a. */

0 i a.length

Post: a v not here v ?

0 a.length

Pre: a v in here

0 i a.length

Inv: a v not here v in here

Pre:
v in a[0..]

Post:
v not in a[0..i)
a[i] == v

Inv:
v not in a[0..i)
v in a[i..]

in array
diagrams

in math

Rule: We never draw
indices directly
above a line in

diagram! Always to
left or right.

Discovering the loop invariant

/** Returns: the smallest index i such that a[i] == v.
 Requires: v is in a. */

Inv:
v not in
a[0..i)
v in a[i..]

Discovering an invariant from the pre and post conditions
requires creativity and practice.

Theorem. There is no algorithm that can do it for you.
Corollary: ChatGPT can’t replace human programmers yet!

Linear Search: with invariant

/** Returns: the smallest index i such that a[i] == v.
 Requires: v is in a. */
int linear_search(int[] a, int v) {
 int i = 0;
 // inv: v not in a[0..i), and v in a[i..]
 while (a[i] != v) i++;
 return i;
}

Linear Search: loop checklist

❑ Does it start right?

❑ Does it maintain the invariant?

❑ Does it end right?

❑ Does it make progress?

/** Returns: the smallest index
 i such that a[i] == v.
 Requires: v is in a. */
int linear_search(int[] a, int v) {
 int i = 0;
 // inv: v not in a[0..i), and v in a[i..]
 while (a[i] != v) i++;
 return i;
}

Binary Search

Key idea: maintain upper and lower bounds on where value could be.

/** Returns: an index i such that a[i] == v.
 Requires: v is in a, and a is sorted in ascending order. */
int bin_search(int[] a, int v) {
 int l = 0;
 int r = a.length - 1;
 // inv: 0 <= l <= r < a.length, and v in a[l..r]
 while (l != r) {
 int m = (l + r) / 2;
 if (v <= a[m]) { r = m; }
 else { l = m + 1; }
 }
 return l;
}

Understanding the loop invariant

/** Returns: an index i such that a[i] == v.
 Requires: v is in a, and a is sorted in ascending order. */

0 i a.length

Post: a <= v v >= v

0 a.length

Pre: a v in here

sorted

0 l r a.lengt
h

Inv: a <= v v in here >= v

sorted

Nothing about the loop invariant requires
halving the search space!

Efficiency is distinct from correctness.

Binary Search: loop checklist

❑ Does it start right?

❑ Does it maintain the invariant?

❑ Does it end right?

❑ Does it make progress?

/** Returns: an index i such that a[i] == v.
 Requires: v is in a, and a is sorted in ascending order.
*/
int bin_search(int[] a, int v) {
 int l = 0;
 int r = a.length - 1;
 // inv: 0 <= l <= r < a.length, and v in a[l..r]
 while (l != r) {
 int m = (l + r) / 2;
 if (v <= a[m]) { r = m; }
 else { l = m + 1; }
 }
 return l;
}

0 l m r a.length

then a <= v … >= v … >= v

sorted

0 l m r a.length

else a <= v … < v … >= v

sorted

Loops (in)variants
are your friends.

CS 2110
Lecture 12?
Sorting
• Selection sort

• Insertion sort

• Merge sort

• Quicksort

Why sort things?

• Makes looking things up
faster
• Binary search

• Compute robust statistics
• Median, quantiles

• Top-10 lists

• Prioritize/optimize
• Search results

• Drawing order

Why multiple
algorithms?

• Tradeoffs: no one “best”
algorithm

• Speed

• Memory

• Expected vs. worst
case

• Stability

• R/W locality

• You will be responsible for
choosing appropriate
methods

Setting: arrays

•Why arrays?
• Data to be sorted is often in an array (or ArrayList)

• Arrays are familiar

• Good opportunity to visualize loop invariants with array diagrams

• Implications
• Fast to read/write arbitrary locations, iterate in reverse

• Swaps are cheap

• Insertions are expensive

•Most algorithms generalize to linked structures

Selection sort

Analogy: bookshelf

• Find the shortest remaining
(unsorted) book

•Move it just after all the already
sorted (and shorter) books

•How to “move” it?
• Push subsequent books out of the

way
• Difficult; analogous to insertion

• Trade places with book in desired
position
• Easy; analogous to swapping

Selection sort example

i=0 3 1 4 1 5

i=1

i=2

i=3

i=4

Selection sort invariant

sorted >= a[0..i)a

0 i a.lengt
h

?a

0 a.lengt
hPre

:

Inv
:

sorteda

0 a.lengt
hPost

:

Selection sort code
// Invariant: a[0..i) is sorted, a[i..] >= a[0..i)

int i = 0;

while (i < a.length - 1) {

 // Find index of smallest element in a[i..]

 int jSmallest = i;

 for (int j = i + 1; j < a.length; ++j) {

 if (a[j] < a[jSmallest]) {

 jSmallest = j;

 }

 }

 // Swap smallest element to extend sorted portion

 swap(a, i, jSmallest);

 i += 1;

}

•

Algorithm properties

Algorithm
Best case time

complexity
Worst case time

complexity
Space complexity

Selection sort

Insertion sort

Analogy: a hand of playing cards

• Left hand holds cards that have
already been sorted

•Take next card from right hand,
insert it where it belongs in left
hand

•How to “insert”
• Push all bigger cards out of the

way

• Swap with cards to left until in
position

Insertion sort example

i=0 3 1 4 1 5

i=1

i=2

i=3

i=4

Insertion sort invariant

sorted ?a

0 i a.lengt
h

?a

0 a.lengt
hPre

:

Inv
:

sorteda

0 a.lengt
hPost

:

Insertion sort code
// Invariant: a[0..i) is sorted

int i = 0;

while (i < a.length) {

 // Slide a[i] to its sorted position in a[0..i]

 // Invariant: a[j] < a[j+1..i]

 int j = i;

 while (j > 0 && a[j - 1] > a[j]) {

 swap(a, j - 1, j);

 j -= 1;

 }

 i += 1;

}

•

Poll: Complexity if array is already sorted?

•How many comparisons does
Insertion Sort evaluate if the
array is already sorted?

(N is the number of elements in
the array)

A. O(1)

B. O(log N)

C. O(N)

D. O(N^2)

Insertion sort extras

• •What if there are duplicates?
• E.g. sorting Students by last name

• Stable: relative order of equal
elements is preserved

• Insertion sort is stable because
elements only move right-to-left
and stop when they hit a duplicate

• Selection sort is not stable
because long-range swaps can
change order

Algorithm properties

Algorithm
Best case time

complexity
Worst case time

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable

Merge sort

Merging sorted subarrays

•Given two sorted sequences, how hard is it to merge them?
• Easy! Repeatedly take the smaller of what’s left of the two sequences

• Complexity: O(N) – easier than sorting (but requires O(N) scratch space)

•What if, when tasked to sort, you outsourced the job to two
assistants, who each sorted half of the list
• Their jobs are easier (maybe much easier), since their lists are smaller

• Your job is easier, since you only have to merge

•What if your assistants outsourced their tasks…?

Divide and conquer

•Divide task into multiple smaller subtasks, then assemble results into
solution

•Natural fit for recursion

Merge example

1 3 4 1 5 9

Merge sort (high level)

1. Sort left half of array (using merge sort)

2. Sort right half of array (using merge sort)

3. Merge left and right subarrays

Merge sort code

•Demo

Merge invariant

sorted ?wor
k

0 k

?wor
k

0

copieda

i mid en
d… …copied

j

sorteda

begi
n

en
dsorted

mid

Pre
:

Inv
:

Post
:

copieda

mi
d

en
d…copied

j

copieda

i mid en
d… copied

O
R

sorted ?wor
k

0 k

Analysis

Algorithm properties

Algorithm
Best case time

complexity
Worst case time

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable

Merge sort Stable

Merge sort in practice

•Usually the go-to stable sort (default in many language libraries)

• Since merging is always left-to-right, can be performed on data that
does not fit in RAM

Quicksort

Quicksort on one slide

sort(a) = [sort(a[a<p]), p, sort(a[a>=p])]

1. Partition array about a “pivot”

2. Sort the subarray of values less than the pivot

3. Sort the subarray of values greater than the pivot

Sort via repeated partitioning

•How efficient is partitioning?

•How many times will you need to partition?

Partition example

3 1 4 1 5 9

Partition invariant

?a

begin end

pPre
:

Inv
:

>= pa

begin end

<= p p

i

Post
:

>= pa

begin end

<= p p ?

i j

Quicksort code

•Demo

Analysis

Best case

•
Worst case

•

Choice of pivot

•Using first value is a bad choice!
• In practice, many arrays are partially sorted

•Computing true median is not cost-effective

•Common heuristic: med3(a[begin], a[mid], a[end-1])

•Consequences of a bad pivot can be severe!
• “Complexity attacks” to deny service

Algorithm properties

Algorithm
Best case time

complexity
Worst case time

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable

Merge sort Stable

Quicksort Unstable

* Naïve implementation requires O(N)
worst-case space, but can use tail recursion to
reduce to O(log N).

Quicksort in practice

•Despite poor worst-case complexity, Quicksort is often the fastest sort
in practice (default unstable sort in many language libraries)

•Often augmented to detect and avoid worst-case behavior (e.g. fall
back to heap sort)

