Search
Algorithms

Linear Search

Key idea: search linearly through array from front to back to find
item

linear_search(a, v) {
i = 0;
while (a[i] != v) i++;
return i;

}

Exercise

State the loop invariant.

V.

/** Returns: the smallest index i such that a[i] =
Requires: v is in a. */
int linear_search(int|[] a, int v) {
int 1 = 0;
// inv: TODO
while (a[i] != v) i++;
return i;

}

Discovering the loop invariant

0 i a.length
Post: th b} Post:
ost: alvnothere | v : v not in a[0..i)
/** Returns: the smallest index i such that a[i] == v. alil==v
Requires: v is in a. */
0 a.length
Pre: a vin here Pre:
vin al0..]
0 i a.length Rule: We never draw
: . . Inv:
) indices directly , ,
Inv: a| vnot here vin here .. v not in a[0..i)
above a line in vinafi] i th
diagram! Always to -l imd

in array

e

left or right.

Discovering the loop invariant

/** Returns: the smallest index i such that a[i] == v.
Requires: v is in a. */
Discovering an invariant from the pre and post conditions
requires creativity and practice.
Theorem. There is no algorithm that can do it for you.

Corollary: ChatGPT can’t replace human programmers yet! Inv:
v hot in
a[0..i)

vin ali..]

Linear Search: with invariant

V.

/** Returns: the smallest index i such that a[i] =
Requires: v is in a. */
int linear_search(int|[] a, int v) {
int 1 = 0;
// inv: v not in a[@..i), and v in a[i..]
while (a[i] != v) i++;
return i;

}

Linear Search: loop checklist

D Does it start right?
D Does it maintain the invariant?
D Does it end right?

D Does it make progress?

linear_search(
i=0;
while (a[i] != v) i++;
return i;

v) {

Binary Search

Key idea: maintain upper and lower bounds on where value could be.

/** Returns: an index i such that a[i] == v.
Requires: v 1is in a, and a 1is sorted in ascending order. */
int bin_search(int[] a, int v) {
int 1 = 0;
int r = a.length - 1;
// inv: @ <=1 <= r < a.length, and v in a[l..r]
while (1 !'= r) {
intm=(1+r)/ 2;
if (v<=a[m]) {r=m; }
else {1 =m+ 1; }
}

return 1;

Understanding the loop invariant

0 i a.length

Post: a <=v Vv >=v
/** Returns: an index i such that a[i] == v.

Requires: v 1is in a, and a 1is sorted in ascending order. */

0 a.length
Pre: a vin here

sorted
0 r a.lengt
h Nothing about the loop invariant requires

i 5| = i e S_— halving the search space!

Efficiency is distinct from correctness.

sorted

Binary Search: loop checklist

D Does it start right?

D Does it maintain the invariant?

D Does it end right?

D Does it make progress?

then

else

d

d

bin_search(a,
1l =o0;
r = a.length - 7;

while (1 !=r) {

m=(1l+r)/

v) {

if (v <=a[m]) {r=m; }

else {1 =m+ 1; }

return 1;
}
| m-——r
<=v >=v >=v
sorted
| —m— r
<=v <v >=V
sorted

a.length

a.length

Loops (in)variants
are your friends.

CS 2110
Lecture 127

Sorting

e Selection sort
* Insertion sort
* Merge sort

* Quicksort

Why sort things?

* Makes looking things up
faster

* Binary search

e Compute robust statistics
* Median, quantiles
* Top-10 lists

* Prioritize/optimize
* Search results
* Drawing order

Why multiple
algorithms?

* Tradeoffs: no one “best”
algorithm

* Speed
* Memory

* Expected vs. worst
case

* Stability
* R/W locality
* You will be responsible for

choosing appropriate
methods

Setting: arrays

* Why arrays?
» Data to be sorted is often in an array (or ArrayList)
* Arrays are familiar
* Good opportunity to visualize loop invariants with array diagrams

* Implications
* Fast to read/write arbitrary locations, iterate in reverse

* Swaps are cheap
* Insertions are expensive

* Most algorithms generalize to linked structures

erald Huphes TED & _

DBURNER®

>
LLUSTRE
CHA I
ROBINSGN

TED wEe)

4 HODGSE

4

GRA
MET

n sort

= | KEX
o
[y

THE

~

£

Selectio

Analogy: bookshelf

* Find the shortest remaining * How to “move” it?

(unsorted) book * Push subsequent books out of the
way
* Difficult; analogous to insertion

* Trade places with book in desired
position

] — ® Easy; analogous to swapping
Before _’_

Q Swap }

* Move it just after all the already
sorted (and shorter) books

Selection sort example

Selection sort invariant

Pre a

Inv a

Post a

sorted

>= a[0..1)

sorted

a.lengt

a.lengt

a.lengt

Selection sort code

// Invariant: a[@..i) is sorted, a[i..] >= a[@0..1))))
*e Time complexity analysis

nt1=8; (N=a.length)

while (i < a.length - 1) { * i=0: N-1 comparisons
// Find index of smallest element in a[i..] * i=1: N-2 comparisons
int jSmallest = i; * i=2: N-3 comparisons

for (int j =1 + 1; j < a.length; ++j) {

jSmallest = j;)
* Total comparisons:

} 1+2+ ..+ (N-1)
) 2
// Swap smallest element to extend sorted portion O(N)

swap(a, i, jSmallest);

i+=1;

Algorithm properties

Best case time Worst case time
Algorithm Space complexity
complexity complexity

Selection sort

Insertion sort

Analogy: a hand of playing cards

e Left hand holds cards that have e How to “insert”

already been sorted e Push all bigger cards out of the
* Take next card from right hand, way -
insert it where it belongs in left ‘:’)‘(’)V;E(‘)"r']'th cards to left until in

hand

Insertion sort example

Insertion sort invariant

0 a.lengt

Pre a ? h
%) i a.lengt

Inv a sorted ? h
0 a.lengt

h

Post a sorted

Insertion sort code

// Invariant: a[@..i) is sorted)))
*e Time complexity analysis

nt1=8; (N=a.length)

while (i < a.length) { « i=1: 1 comparison
// Slide a[i] to its sorted position in a[@..i] * =2:< 2 comparisons
// Invariant: a[j] < a[j+1..i] * i=3:< 3 comparisons

int §j = i; *
while (5 > @ && a[j - 1] > a[3]) { * i=N-1:< N-1 comparisons

swap(a, j - 1, j);
. p(a, J > 3); * Total comparisons (worst-case):
J-=1; 1+2+..+(N-1)

i+=1; O(Nz)

Poll: Complexity if array is already sorted?

* How many comparisons does
Insertion Sort evaluate if the
array is already sorted?

A. 0O(1)
(N is the number of elements in 5 O(log N)
the array)

C. O(N)

D. O(N"2)

(__j
Q

too-i"_
mBoBo o> ¢ I
@ ¢
+

Insertion sort extras

« What if array is already sorted?

* Each “insert” requires only 1
comparison

* Overall complexity (best case) is
Q(N)

 Fast in practice for small N

» Often used as a “base case” in
implementations of other algs

* What if there are duplicates?
* E.g. sorting Students by last name

* Stable: relative order of equal
elements is preserved

* Insertion sort is stable because
elements only move right-to-left
and stop when they hit a duplicate

* Selection sort is not stable
because long-range swaps can
change order

Algorithm properties

. Best case time Worst case time . ore
Algorithm . . Space complexity Stability
complexity complexity

Selection sort Unstable

Insertion sort Stable

Ty wy

“Merge sort~ -

Merging sorted subarrays

* Given two sorted sequences, how hard is it to merge them?
» Easy! Repeatedly take the smaller of what’s left of the two sequences
» Complexity: O(N) — easier than sorting (but requires O(N) scratch space)

* What if, when tasked to sort, you outsourced the job to two
assistants, who each sorted half of the list
* Their jobs are easier (maybe much easier), since their lists are smaller
* Your job is easier, since you only have to merge

* What if your assistants outsourced their tasks...?

Divide and conquer

* Divide task into multiple smaller subtasks, then assemble results into
solution

e Natural fit for recursion

Merge example

IR N

Merge sort (high level)

1.

Sort left half of array (using merge sort)

2. Sort right half of array (using merge sort)

3.

Merge left and right subarrays

7 5 9 3 6 0 2 4
0 1 3 4 5 [§ 7
3 5 7 9 0o | 2 4 6
| Il)
\/
I : |
0 2 3 4 5 | 6 7 9
I T N S I I I

Divide the array into two halves

Sort the two halves
Merge the sorted halves into

another array

Copy the merged array back into
the original array

Merge sort code

* Demo

Merge invariant

begi mid
Pre a|" sorted sorted
i mid j
Inv a| copied copied
mi J
Post a copied Qopied
O i mid
a réopied copied

wor

wor

wor

sorted

sorted

Analysis

L7 1s o] 3]
2 7S

IE s || 9 3|
3 4 7 8
7]|5!!9||3!
5

[s 7 | | 3 9 |
l y 10 '
3]s f7[9]

Effect of
|_recursive
calls to
mergeSort

— Merge steps

Copy to
original array

Algorithm properties

. Best case time Worst case time . ore
Algorithm . . Space complexity Stability
complexity complexity

Selection sort Unstable
Insertion sort Stable

Merge sort Stable

Merge sort in practice

* Usually the go-to stable sort (default in many language libraries)

* Since merging is always left-to-right, can be performed on data that
does not fit in RAM

Quicksort

Quicksort on one slide
sort(a) = [sort(a[a<p]), p, sort(a[a>=p])]

1. Partition array about a “pivot”
2. Sort the subarray of values less than the pivot
3. Sort the subarray of values greater than the pivot

Sort via repeated partitioning
* How efficient is partitioning?
* How many times will you need to partition?

Partition example

RN ENENES

Partition invariant

begin end
Pre a|p ?

begin i j end
Inv a <=p p ? >=p

begin i end

Post a <=p p >=p

Quicksort code

* Demo

Analysis

Best case
» Pjvot is median value

e Each subarray is less than half
the size of the original

* Depth of recursion: O(log N)
Cost of partitioning one level:
O(N)

* Overall complexity: QL(N log N)

Worst case

« Pivot is smallest (or largest)
value

* One subarray is only 1 element
shorter than original array

* Dept of recursion: O(N)
Cost of partitioning one level:
O(N)

» Overall complexity: O(N?)

Choice of pivot

* Using first value is a bad choice!
* In practice, many arrays are partially sorted

* Computing true median is not cost-effective
e Common heuristic: ned3(a[begin], a[mid], a[end-1])

* Consequences of a bad pivot can be severe!
» “Complexity attacks” to deny service

Algorithm properties

. Best case time Worst case time . ore
Algorithm . . Space complexity Stability
complexity complexity

Selection sort Unstable
Insertion sort Stable
Merge sort Stable

Quicksort Unstable

* Naive implementation requires O(N)
worst-case space, but can use tail recursion to
reduce to O(log N).

Quicksort in practice

* Despite poor worst-case complexity, Quicksort is often the fastest sort
in practice (default unstable sort in many language libraries)

» Often augmented to detect and avoid worst-case behavior (e.g. fall
back to heap sort)

