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Linear Search

Key idea: search linearly through array from front to back to find 
item

/** Returns: the smallest index i such that a[i] == v.
    Requires: v is in a. */
int linear_search(int[] a, int v) {
  int i = 0;

  while (a[i] != v) i++;
  return i;
}



Exercise

State the loop invariant.

/** Returns: the smallest index i such that a[i] == v.
    Requires: v is in a. */
int linear_search(int[] a, int v) {
  int i = 0;
  // inv: TODO
  while (a[i] != v) i++;
  return i;
}



Discovering the loop invariant

/** Returns: the smallest index i such that a[i] == v.
    Requires: v is in a. */

0 i a.length

Post: a v not here v ?

0 a.length

Pre: a v in here

0 i a.length

Inv: a v not here v in here

Pre:
v in a[0..]

Post:
v not in a[0..i)
a[i] == v

Inv:
v not in a[0..i)
v in a[i..]

in array 
diagrams

in math

Rule: We never draw 
indices directly 
above a line in 

diagram! Always to 
left or right.



Discovering the loop invariant

/** Returns: the smallest index i such that a[i] == v.
    Requires: v is in a. */

Inv:
v not in 
a[0..i)
v in a[i..]

Discovering an invariant from the pre and post conditions 
requires creativity and practice. 

Theorem. There is no algorithm that can do it for you.
Corollary: ChatGPT can’t replace human programmers yet!



Linear Search: with invariant

/** Returns: the smallest index i such that a[i] == v.
    Requires: v is in a. */
int linear_search(int[] a, int v) {
  int i = 0;
  // inv: v not in a[0..i), and v in a[i..]
  while (a[i] != v) i++;
  return i;
}



Linear Search: loop checklist

❑  Does it start right?

❑  Does it maintain the invariant?

❑  Does it end right?

❑  Does it make progress?

/** Returns: the smallest index 
      i such that a[i] == v.
    Requires: v is in a. */
int linear_search(int[] a, int v) {
  int i = 0;
  // inv: v not in a[0..i), and v in a[i..]
  while (a[i] != v) i++;
  return i;
}



Binary Search

Key idea: maintain upper and lower bounds on where value could be.

/** Returns: an index i such that a[i] == v.
    Requires: v is in a, and a is sorted in ascending order. */
int bin_search(int[] a, int v) {
  int l = 0;
  int r = a.length - 1;
  // inv: 0 <= l <= r < a.length, and v in a[l..r]
  while (l != r) {
    int m = (l + r) / 2;
    if (v <= a[m]) { r = m; }
    else { l = m + 1; }
  }
  return l; 
}



Understanding the loop invariant

/** Returns: an index i such that a[i] == v.
    Requires: v is in a, and a is sorted in ascending order. */

0 i a.length

Post: a <= v v >= v

0 a.length

Pre: a v in here

sorted

0 l r a.lengt
h

Inv: a <= v v in here >= v

sorted

Nothing about the loop invariant requires 
halving the search space!

Efficiency is distinct from correctness.



Binary Search: loop checklist

❑  Does it start right?

❑  Does it maintain the invariant?

❑  Does it end right?

❑  Does it make progress?

/** Returns: an index i such that a[i] == v.
    Requires: v is in a, and a is sorted in ascending order. 
*/
int bin_search(int[] a, int v) {
  int l = 0;
  int r = a.length - 1;
  // inv: 0 <= l <= r < a.length, and v in a[l..r]
  while (l != r) {
    int m = (l + r) / 2;
    if (v <= a[m]) { r = m; }
    else { l = m + 1; }
  }
  return l; 
}

0 l m r a.length

then a <= v … >= v … >= v

sorted

0 l m r a.length

else a <= v … < v … >= v

sorted



Loops (in)variants 
are your friends.



CS 2110
Lecture 12?
Sorting
• Selection sort

• Insertion sort

• Merge sort

• Quicksort



Why sort things?

• Makes looking things up 
faster
• Binary search

• Compute robust statistics
• Median, quantiles

• Top-10 lists

• Prioritize/optimize
• Search results

• Drawing order



Why multiple 
algorithms?

• Tradeoffs: no one “best” 
algorithm

• Speed

• Memory

• Expected vs. worst 
case

• Stability

• R/W locality

• You will be responsible for 
choosing appropriate 
methods



Setting: arrays

•Why arrays?
• Data to be sorted is often in an array (or ArrayList)

• Arrays are familiar

• Good opportunity to visualize loop invariants with array diagrams

• Implications
• Fast to read/write arbitrary locations, iterate in reverse

• Swaps are cheap

• Insertions are expensive

•Most algorithms generalize to linked structures



Selection sort



Analogy: bookshelf

• Find the shortest remaining 
(unsorted) book

•Move it just after all the already 
sorted (and shorter) books

•How to “move” it?
• Push subsequent books out of the 

way
• Difficult; analogous to insertion

• Trade places with book in desired 
position
• Easy; analogous to swapping



Selection sort example

i=0 3 1 4 1 5

i=1

i=2

i=3

i=4



Selection sort invariant

sorted >= a[0..i)a

0 i a.lengt
h

?a

0 a.lengt
hPre

:

Inv
:

sorteda

0 a.lengt
hPost

:



Selection sort code
// Invariant: a[0..i) is sorted, a[i..] >= a[0..i)

int i = 0;

while (i < a.length - 1) {

    // Find index of smallest element in a[i..]

    int jSmallest = i;

    for (int j = i + 1; j < a.length; ++j) {

        if (a[j] < a[jSmallest]) {

            jSmallest = j;

        }

    }

    // Swap smallest element to extend sorted portion

    swap(a, i, jSmallest);

    i += 1;

}

•  



Algorithm properties

Algorithm
Best case time 

complexity
Worst case time 

complexity
Space complexity

Selection sort



Insertion sort



Analogy: a hand of playing cards

• Left hand holds cards that have 
already been sorted

•Take next card from right hand, 
insert it where it belongs in left 
hand

•How to “insert”
• Push all bigger cards out of the 

way

• Swap with cards to left until in 
position



Insertion sort example

i=0 3 1 4 1 5

i=1

i=2

i=3

i=4



Insertion sort invariant

sorted ?a

0 i a.lengt
h

?a

0 a.lengt
hPre

:

Inv
:

sorteda

0 a.lengt
hPost

:



Insertion sort code
// Invariant: a[0..i) is sorted

int i = 0;

while (i < a.length) {

    // Slide a[i] to its sorted position in a[0..i]

    // Invariant: a[j] < a[j+1..i]

    int j = i;

    while (j > 0 && a[j - 1] > a[j]) {

        swap(a, j - 1, j);

        j -= 1;

    }

    i += 1;

}

•  



Poll: Complexity if array is already sorted?

•How many comparisons does 
Insertion Sort evaluate if the 
array is already sorted?

(N is the number of elements in 
the array)

A. O(1)

B. O(log N)

C. O(N)

D. O(N^2)



Insertion sort extras

•  •What if there are duplicates?
• E.g. sorting Students by last name

• Stable: relative order of equal 
elements is preserved

• Insertion sort is stable because 
elements only move right-to-left 
and stop when they hit a duplicate

• Selection sort is not stable 
because long-range swaps can 
change order



Algorithm properties

Algorithm
Best case time 

complexity
Worst case time 

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable



Merge sort



Merging sorted subarrays

•Given two sorted sequences, how hard is it to merge them?
• Easy! Repeatedly take the smaller of what’s left of the two sequences

• Complexity: O(N) – easier than sorting (but requires O(N) scratch space)

•What if, when tasked to sort, you outsourced the job to two 
assistants, who each sorted half of the list
• Their jobs are easier (maybe much easier), since their lists are smaller

• Your job is easier, since you only have to merge

•What if your assistants outsourced their tasks…?



Divide and conquer

•Divide task into multiple smaller subtasks, then assemble results into 
solution

•Natural fit for recursion



Merge example

1 3 4 1 5 9



Merge sort (high level)

1. Sort left half of array (using merge sort)

2. Sort right half of array (using merge sort)

3. Merge left and right subarrays



Merge sort code

•Demo



Merge invariant

sorted ?wor
k

0 k

?wor
k

0

copieda

i mid en
d… …copied

j

sorteda

begi
n

en
dsorted

mid

Pre
:

Inv
:

Post
:

copieda

mi
d

en
d…copied

j

copieda

i mid en
d… copied

O
R

sorted ?wor
k

0 k



Analysis



Algorithm properties

Algorithm
Best case time 

complexity
Worst case time 

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable

Merge sort Stable



Merge sort in practice

•Usually the go-to stable sort (default in many language libraries)

• Since merging is always left-to-right, can be performed on data that 
does not fit in RAM



Quicksort



Quicksort on one slide

sort(a) = [ sort(a[a<p]), p, sort(a[a>=p]) ]

1. Partition array about a “pivot”

2. Sort the subarray of values less than the pivot

3. Sort the subarray of values greater than the pivot

Sort via repeated partitioning

•How efficient is partitioning?

•How many times will you need to partition?



Partition example

3 1 4 1 5 9



Partition invariant

?a

begin end

pPre
:

Inv
:

>= pa

begin end

<= p p

i

Post
:

>= pa

begin end

<= p p ?

i j



Quicksort code

•Demo



Analysis

Best case

•  
Worst case

•  



Choice of pivot

•Using first value is a bad choice!
• In practice, many arrays are partially sorted

•Computing true median is not cost-effective

•Common heuristic: med3(a[begin], a[mid], a[end-1])

•Consequences of a bad pivot can be severe!
• “Complexity attacks” to deny service



Algorithm properties

Algorithm
Best case time 

complexity
Worst case time 

complexity
Space complexity Stability

Selection sort Unstable

Insertion sort Stable

Merge sort Stable

Quicksort Unstable

* Naïve implementation requires O(N) 
worst-case space, but can use tail recursion to 
reduce to O(log N).



Quicksort in practice

•Despite poor worst-case complexity, Quicksort is often the fastest sort 
in practice (default unstable sort in many language libraries)

•Often augmented to detect and avoid worst-case behavior (e.g. fall 
back to heap sort)


