| o™ o>
- HASHING ||

Hash Functions

1 0 Requirements:
4 1 deterministic
3 return a number in [0..n]

Properties of a good
hash:

fast
collision-resistant
evenly distributed

hard to invert

Hash Table

add (“CA")

Cm Cat(m -D

NY

CA

Two ways of handling collisions:

1. Chaining

—O
O O—O

2. Open Addressing

=

HashSet and HashMap

]
Set<V>{ Map<K,V>{
boolean add(V value); V put(K key, V value);
boolean contains(V value); V get(K key);
boolean remove(V value); V remove(K key);
} }

put('a')
put('b')
put('c')
put('d’')
get('d')
remove ('c')
get('d')
put('e')

Remove
—

0 1 2 3 0 1 2 3

| | ade

Time Complexity (no resizing)
o

Chaining 0(1) 0(n) 0(n)
Open Addressing 0(n) 0(n) 0(n)

Load Factor
A

Load factor

— A #of entries
length of array

Expected Chain Length

0 1 2 3 4 5
For each bucket, probability that G

a single object is hashed to that bucket
is 1/length of array

There are n objects in the hash table

Expected length of chain is n/length of array = A

Expected Time Complexity

‘no resizinﬁi
"o]

Chaining 0(1) 01+ 1) 01+ 1)
Open Addressing

Expected Number of Probes

We always have to probe H(v)

With probability A, first location is full, have to
probe again

With probability A - A, second location is also full,
have to probe yet again

Expected #probes =1+ A1+ A% + ... = 171/1

Expected Time Complexity

‘no resizinﬁi
N

Chaining 0(1) 0(1) 0(1)
Open Addressing

o) o) o)

Assuming constant load factor

We need to dynamically resize!

Amortized Analysis

0 In an amortized analysis,
the time required to
perform a sequence of
operations is averaged
over all the operations

-1 Can be used to calculate

average cost of operation

Amortized Analysis of put

: .. : 1
Assume dynamic resizing with load factor A = S

Most put operations take (expected) time O(1)
If i = 27, put takes time 0 (i)

Total time to perform n put operations is
n-0(1)+0R2°+2+22+ ..+2))
Average time to perform 1 put operation is

1 1 1 1
0(1)+0(§+2j_1+ +Z+E+1)=0(1)

Expected Time Complexity

‘wi’rh danmic resizinm
e

Chaining 0(1) 0(1) 0(1)
Open Addressing

o) o) o)

Cuckoo Hashing

Cuckoo Hashing

Alternative solution to collisions
Assume you have two hash functions H1 and H2
element a | b|c |d e
HI O 9 |17 11
H2 5 2 103 |13
0 1 2 3 4 5
a b d C d

What if there are loops?

Complexity of Cuckoo Hashing

1 Worst Case:

Chaining 0(1) 0(n) 0(n)
Open Addressing 0(n) 0(n) O(n)
Cuckoo Hashing 00 0(1) 0(1)

11 Expected Case:

Chaining 0(1) 0(1) 0(1)
Open Addressing 0(1) 0(1) 0(1)
Cuckoo Hashing 0(1) 0(1) 0(1)

Bloom Filters

Assume we only want to implement a set

What if you had stored the value at "all” hash
locations (instead of one)?

element al b |c |d |e
Hi O 9 17 |11
H2 5 2 10/3 |13
0 1 2 3 4 5

@ @ @ -

Features of Bloom Filters
9

- Worst-case 0(1) put, get, and remove
7 Works well with higher load factors

o But: false positives

