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Hash Functions

¨ Requirements:
1) deterministic
2) return a number in [0..n]
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¨ Properties of a good 
hash:
1) fast
2) collision-resistant
3) evenly distributed
4) hard to invert



Hash Table
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Two ways of handling collisions:
1. Chaining                              2.  Open Addressing



HashSet and HashMap

Map<K,V>{

V put(K key, V value);

V get(K key);

V remove(K key);

}

Set<V>{

boolean add(V value);

boolean contains(V value);

boolean remove(V value);

}



Remove

Chaining Open Addressing
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put('a')
put('b')
put('c')
put('d')
get('d')
remove('c')
get('d')
put('e')



Time Complexity (no resizing)
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Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Open Addressing 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)



Load Factor
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Load factor



Expected Chain Length

¨ For each bucket, probability that                            
a single object is hashed to that bucket                   
is 1/length of array

¨ There are n objects in the hash table
¨ Expected length of chain is n/length of array = 𝜆
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Expected Time Complexity 
(no resizing)
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Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1 + 𝜆) 𝑂(1 + 𝜆)
Open Addressing



Expected Number of Probes

¨ We always have to probe H(v)
¨ With probability 𝜆, first location is full, have to 

probe again
¨ With probability 𝜆 ⋅ 𝜆, second location is also full, 

have to probe yet again
¨ …

¨ Expected #probes = 1 + 𝜆 + 𝜆) +	… = -
-./
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Expected Time Complexity 
(no resizing)

Assuming constant load factor 
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Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1 + 𝜆) 𝑂(1 + 𝜆)
Open Addressing 𝑂(

1
1 − 𝜆

) 𝑂(
1

1 − 𝜆
) 𝑂(

1
1 − 𝜆

)

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)

We need to dynamically resize!



Amortized Analysis
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¨ In an amortized analysis, 
the time required to 
perform a sequence of 
operations is averaged 
over all the operations

¨ Can be used to calculate 
average cost of operation

vs.



Amortized Analysis of put

¨ Assume dynamic resizing with load factor 𝜆 = -
)

:

¤ Most put operations take (expected) time 𝑂 1
¤ If 𝑖 = 23, put takes time 𝑂 𝑖
¤ Total time to perform n put operations is                    
𝑛 ⋅ 𝑂 1 + 𝑂(24 + 2- + 2) +	…+ 23)

¤ Average time to perform 1 put operation is                     

𝑂 1 + 𝑂 -
)5
+ -

)567
+	…+ -

8
+ -

)
+ 1 = 𝑂(1)	
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Expected Time Complexity 
(with dynamic resizing)
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Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)



Cuckoo Hashing



Cuckoo Hashing

¨ Alternative solution to collisions
¨ Assume you have two hash functions H1 and H2
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0 1 2 3 4 5

element a b c d e

H1 0 9 17	 11 5

H2 5 2 10 3 13

a b cdc edb

What if there are loops?



Complexity of Cuckoo Hashing

¨ Worst Case:

¨ Expected Case:
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Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Open Addressing 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
Cuckoo Hashing ∞ 𝑂(1) 𝑂(1)

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)
Cuckoo Hashing 𝑂(1) 𝑂(1) 𝑂(1)



Bloom Filters 

¨ Assume we only want to implement a set
¨ What if you had stored the value at "all" hash 

locations (instead of one)?

18

0 1 2 3 4 5

element a b c d e

H1 0 9 17	 11 5
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Features of Bloom Filters

¨ Worst-case 𝑂(1) put, get, and remove
¨ Works well with higher load factors
¨ But: false positives
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