
CS2110
Spring 2018HASHING II

Hash Functions

¨ Requirements:
1) deterministic
2) return a number in [0..n]

01

3
4 1

¨ Properties of a good
hash:
1) fast
2) collision-resistant
3) evenly distributed
4) hard to invert

Hash Table
3

Hash
hunctionCA 5

add(“CA”)

b

mod 6

CA

0 1 2 3 4 5

NYMA

Two ways of handling collisions:
1. Chaining 2. Open Addressing

HashSet and HashMap

Map<K,V>{

V put(K key, V value);

V get(K key);

V remove(K key);

}

Set<V>{

boolean add(V value);

boolean contains(V value);

boolean remove(V value);

}

Remove

Chaining Open Addressing

a b

c

e

d

0 1 2 3 0 1 2 3

a d bce

put('a')
put('b')
put('c')
put('d')
get('d')
remove('c')
get('d')
put('e')

Time Complexity (no resizing)
6

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Open Addressing 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Load Factor
7

Load factor

Expected Chain Length

¨ For each bucket, probability that
a single object is hashed to that bucket
is 1/length of array

¨ There are n objects in the hash table
¨ Expected length of chain is n/length of array = 𝜆

8

0 1 2 3 4 5

a b c

d

e

Expected Time Complexity
(no resizing)

9

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1 + 𝜆) 𝑂(1 + 𝜆)
Open Addressing

Expected Number of Probes

¨ We always have to probe H(v)
¨ With probability 𝜆, first location is full, have to

probe again
¨ With probability 𝜆 ⋅ 𝜆, second location is also full,

have to probe yet again
¨ …

¨ Expected #probes = 1 + 𝜆 + 𝜆) +	… = -
-./

10

0 1 2 3 4 5

Expected Time Complexity
(no resizing)

Assuming constant load factor

11

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1 + 𝜆) 𝑂(1 + 𝜆)
Open Addressing 𝑂(

1
1 − 𝜆

) 𝑂(
1

1 − 𝜆
) 𝑂(

1
1 − 𝜆

)

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)

We need to dynamically resize!

Amortized Analysis
12

¨ In an amortized analysis,
the time required to
perform a sequence of
operations is averaged
over all the operations

¨ Can be used to calculate
average cost of operation

vs.

Amortized Analysis of put

¨ Assume dynamic resizing with load factor 𝜆 = -
)

:

¤ Most put operations take (expected) time 𝑂 1
¤ If 𝑖 = 23, put takes time 𝑂 𝑖
¤ Total time to perform n put operations is
𝑛 ⋅ 𝑂 1 + 𝑂(24 + 2- + 2) +	…+ 23)

¤ Average time to perform 1 put operation is

𝑂 1 + 𝑂 -
)5
+ -

)567
+	…+ -

8
+ -

)
+ 1 = 𝑂(1)	

13

Expected Time Complexity
(with dynamic resizing)

14

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)

Cuckoo Hashing

Cuckoo Hashing

¨ Alternative solution to collisions
¨ Assume you have two hash functions H1 and H2

16

0 1 2 3 4 5

element a b c d e

H1 0 9 17	 11 5

H2 5 2 10 3 13

a b cdc edb

What if there are loops?

Complexity of Cuckoo Hashing

¨ Worst Case:

¨ Expected Case:

17

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Open Addressing 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
Cuckoo Hashing ∞ 𝑂(1) 𝑂(1)

Collision Handling put(v) get(v) remove(v)

Chaining 𝑂(1) 𝑂(1) 𝑂(1)
Open Addressing 𝑂(1) 𝑂(1) 𝑂(1)
Cuckoo Hashing 𝑂(1) 𝑂(1) 𝑂(1)

Bloom Filters

¨ Assume we only want to implement a set
¨ What if you had stored the value at "all" hash

locations (instead of one)?

18

0 1 2 3 4 5

element a b c d e

H1 0 9 17	 11 5

H2 5 2 10 3 13

🔵 🔵🔵 🔵

Features of Bloom Filters

¨ Worst-case 𝑂(1) put, get, and remove
¨ Works well with higher load factors
¨ But: false positives

19

