
RECURSION
Lecture 8

CS2110 – Spring 2018

six items

2

Note: We’ve covered almost
everything in Java! Just a few
more things, which will be
covered from time to time.

Recursion: Look at Java
Hypertext entry “recursion”.

Prelim 1 is in 3 weeks
(Tues, 13 March, 5:30, 7:30)
We’ll tell you about it next
Tuesday.

A1 grades will be made
available soon. Thanks for
your patience.

Remember to do the tutorial
for next week’s recitation.

A3 due on 1 March, but get
started on it now.

To Understand Recursion…
3

Recursion – Real Life Examples
4

<noun phrase> = <noun>, or
<adjective> <noun phrase>, or
<adverb> <noun phrase>

Example:

daybad veryno-goodhorribleterrible

Recursion – Real Life Examples
5

<noun phrase> = <noun>, or
<adjective> <noun phrase>, or
<adverb> <noun phrase>

ancestor(p) = parent(p), or
parent(ancestor(p))

0! = 1
n! = n * (n-1)!

1, 1, 2, 6, 24, 120, 720, 5050, 40320, 362880, 3628800, 39916800,
479001600…

great great great great great great great great great great great
great great grandmother.

Sum the digits in a non-negative integer

6

sum(7) = 7

/** = sum of digits in n.
* Precondition: n >= 0 */

public static int sumDigs(int n) {
if (n < 10) return n;

// { n has at least two digits }
// return first digit + sum of rest
return n%10 + sum(n/10);

}

sum(8703) = 3 + sum(870)
= 3 + 8 + sum(70)
= 3 + 8 + 7 + sum(0)

sum calls itself!

Two different questions, two different answers

7

1. How is it executed?
(or, why does this even work?)

2. How do we understand recursive methods?
(or, how do we write/develop recursive methods?)

Stacks and Queues

8

top element
2nd element

...
bottom
element

stack grows Stack: list with (at least) two basic ops:
* Push an element onto its top
* Pop (remove) top element

Last-In-First-Out (LIFO)

Like a stack of trays in a cafeteria

first second … last Queue: list with (at least) two basic ops:
* Append an element
* Remove first element

First-In-First-Out (FIFO)
Americans wait in a
line. The Brits wait in a
queue !

local variables

parameters

return info

Stack Frame

9

a frame

A “frame” contains information
about a method call:

At runtime Java maintains a
stack that contains frames
for all method calls that are being
executed but have not completed.

Method call: push a frame for call on stack. Assign argument
values to parameters. Execute method body. Use the frame for
the call to reference local variables and parameters.

End of method call: pop its frame from the stack; if it is a
function leave the return value on top of stack.

Memorize method call execution!
11

A frame for a call contains parameters, local variables, and other
information needed to properly execute a method call.

To execute a method call:

1. push a frame for the call on the stack,

2. assign argument values to parameters,

3. execute method body,

4. pop frame for call from stack, and (for a function) push
returned value on stack

When executing method body look in frame
for call for parameters and local variables.

Memorize method call execution!
12

To execute a method call:

1. push a frame for the call on the stack,

2. assign argument values to parameters,

3. execute method body,

4. pop frame for call from stack, and (for a function) push
returned value on stack

The following slides step through execution of a recursive call to
demo execution of a method call.

Here, we will demo using this website:

http://www.pythontutor.com/visualize.html

Frames for methods sum main method in the system

13

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

frame:
n ___
return info

frame:
r ___ args ___
return info

frame:
?

return info
Frame for method in the system
that calls method main

Example: Sum the digits in a non-negative integer

14

?
return info

Frame for method in the system
that calls method main: main is
then called

system

r ___ args ___
return info

main

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

15

?
return info

Method main calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

16

?
return info

n >= 10 sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

17

?
return info

n >= 10. sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

18

?
return info

n < 10 sum stops: frame is popped
and n is put on stack: system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8
8

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

19

?
return info

Using return value 8 stack computes
2 + 8 = 10 pops frame from stack puts
return value 10 on stack

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82
8

10

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

20

?
return info

Using return value 10 stack computes
4 + 10 = 14 pops frame from stack
puts return value 14 on stack

r ___ args ___
return info

main

n ___
return info

824

10

14

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Example: Sum the digits in a non-negative integer

21

?
return info

Using return value 14 main stores
14 in r and removes 14 from stack

r ___ args __
return info

main

14
14

public static int sum(int n) {
if (n < 10) return n;
return n%10 + sum(n/10);

}

public static void main(
String[] args) {

int r= sum(824);
System.out.println(r);

}

Poll time!
22

Two different questions, two different answers

23

1. How is it executed?
(or, why does this even work?)

2. How do we understand recursive methods?
(or, how do we write/develop recursive methods?)

It’s not magic! Trace the code’s execution using the method call
algorithm, drawing the stack frames as you go.
Use only to gain understanding / assurance that recursion works.

This requires a totally different approach.

Back to Real Life Examples
24

Factorial function:
0! = 1
n! = n * (n-1)! for n > 0
(e.g.: 4! = 4*3*2*1=24)

Exponentiation:
b0 = 1
bc = b * bc-1 for c > 0

Easy to make math definition
into a Java function!
public static int fact(int n) {
if (n == 0) return 1;

return n * fact(n-1);
}

public static int exp(int b, int c) {
if (c == 0) return 1;

return b * exp(b, c-1);
}

How to understand what a call does
25

/** = sum of the digits of n.
* Precondition: n >= 0 */
public static int sumDigs(int n) {
if (n < 10) return n;
// n has at least two digits
return n%10 + sumDigs(n/10);

}

sumDigs(654)

Make a copy of the method spec,
replacing the parameters of the
method by the arguments

sum of digits of n

spec says that the
value of a call

equals the sum of
the digits of n

sum of digits of 654

Understanding a recursive method
26

Step 1. Have a precise spec!

Step 2. Check that the method works in the base case(s): That is,
Cases where the parameter is small enough that the result can be
computed simply and without recursive calls.

If n < 10 then n consists
of a single digit.

Looking at the spec we
see that that digit is the
required sum.

/** = sum of the digits of n.
* Precondition: n >= 0 */
public static int sumDigs(int n) {
if (n < 10) return n;
// n has at least two digits
return n%10 + sumDigs(n/10);

}

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the method spec and verify that the correct result
is then obtained.

return n%10 + sum(n/10);

Understanding a recursive method
27

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

return n%10 + (sum of digits of n/10); // e.g. n = 843

/** = sum of the digits of n.
* Precondition: n >= 0 */

public static int sumDigs(int n) {
if (n < 10) return n;
// n has at least two digits
return n%10 + sumDigs(n/10);

}

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does acc. to the spec and verify correctness.

Understanding a recursive method
28

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method.

n/10 < n, so it will get smaller until it has one digit

/** = sum of the digits of n.
* Precondition: n >= 0 */
public static int sumDigs(int n) {
if (n < 10) return n;
// n has at least two digits
return n%10 + sumDigs(n/10);

}

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the spec and
verify correctness.

Understanding a recursive method
29

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the parameters of the method

Important! Can’t do step 3 without
precise spec.

Once you get the hang of it this is
what makes recursion easy! This
way of thinking is based on math
induction which we don’t cover
in this course.

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind. Done suitably, point 4
(about termination) is automatically satisfied.

Writing a recursive method
30

Step 1. Have a precise spec!

Step 2. Write the base case(s): Cases in which no recursive calls
are needed. Generally for “small” values of the parameters.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the parameters of the method

Two different questions, two different answers

31

2. How do we understand recursive methods?
(or, how do we write/develop recursive methods?)

Step 3. Look at the recursive case(s). In your mind replace each
recursive call by what it does according to the spec and verify
correctness.

Step 1. Have a precise spec!

Step 2. Check that the method works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the parameters of the method

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind.

Examples of writing recursive functions
32

Step 1. Have a precise spec!
Step 2. Write the base case(s).

For the rest of the class we demo writing recursive functions
using the approach outlined below. The java file we develop
will be placed on the course webpage some time after the
lecture.

Step 4. Make sure recursive calls are “smaller” (no infinite recursion).

Check palindrome-hood
33

A String palindrome is a String that reads the same backward
and forward:

A String with at least two characters is a palindrome if
¨ (0) its first and last characters are equal and
¨ (1) chars between first & last form a palindrome:

e.g. AMANAPLANACANALPANAMA

A recursive definition!

have to be the same

have to be a palindrome

isPal(“racecar”) à true isPal(“pumpkin”) à false

34

¨ A man a plan a caret a ban a myriad a sum a lac a liar a hoop a pint a catalpa a gas
an oil a bird a yell a vat a caw a pax a wag a tax a nay a ram a cap a yam a gay a tsar
a wall a car a luger a ward a bin a woman a vassal a wolf a tuna a nit a pall a fret a
watt a bay a daub a tan a cab a datum a gall a hat a fag a zap a say a jaw a lay a wet a
gallop a tug a trot a trap a tram a torr a caper a top a tonk a toll a ball a fair a sax a
minim a tenor a bass a passer a capital a rut an amen a ted a cabal a tang a sun an ass
a maw a sag a jam a dam a sub a salt an axon a sail an ad a wadi a radian a room a
rood a rip a tad a pariah a revel a reel a reed a pool a plug a pin a peek a parabola a
dog a pat a cud a nu a fan a pal a rum a nod an eta a lag an eel a batik a mug a mot a
nap a maxim a mood a leek a grub a gob a gel a drab a citadel a total a cedar a tap a
gag a rat a manor a bar a gal a cola a pap a yaw a tab a raj a gab a nag a pagan a bag
a jar a bat a way a papa a local a gar a baron a mat a rag a gap a tar a decal a tot a led
a tic a bard a leg a bog a burg a keel a doom a mix a map an atom a gum a kit a
baleen a gala a ten a don a mural a pan a faun a ducat a pagoda a lob a rap a keep a
nip a gulp a loop a deer a leer a lever a hair a pad a tapir a door a moor an aid a raid
a wad an alias an ox an atlas a bus a madam a jag a saw a mass an anus a gnat a lab a
cadet an em a natural a tip a caress a pass a baronet a minimax a sari a fall a ballot a
knot a pot a rep a carrot a mart a part a tort a gut a poll a gateway a law a jay a sap a
zag a fat a hall a gamut a dab a can a tabu a day a batt a waterfall a patina a nut a
flow a lass a van a mow a nib a draw a regular a call a war a stay a gam a yap a cam
a ray an ax a tag a wax a paw a cat a valley a drib a lion a saga a plat a catnip a pooh
a rail a calamus a dairyman a bater a canal Panama

Example: Is a string a palindrome?
35

/** = "s is a palindrome" */
public static boolean isPal(String s) {

if (s.length() <= 1)
return true;

// { s has at least 2 chars }
int n= s.length()-1;
return s.charAt(0) == s.charAt(n) && isPal(s.substring(1,n));

}

Substring from
s[1] to s[n-1]

The Fibonacci Function
36

Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n - 1) + fib(n - 2) n ≥ 2

Fibonacci sequence: 0 1 1 2 3 5 8 13 …

/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
if (n <= 1) return n;
// { 1 < n }
return fib(n-1) + fib(n-2);

}

two base cases!

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa Italy
Giovanni Paganucci

1863

Example: Count the e’s in a string
37

¨ countEm(‘e’, “it is easy to see that this has many e’s”) = 4
¨ countEm(‘e’, “Mississippi”) = 0

/** = number of times c occurs in s */
public static int countEm(char c, String s) {

if (s.length() == 0) return 0;

// { s has at least 1 character }
if (s.charAt(0) != c)

return countEm(c, s.substring(1));

// { first character of s is c}
return 1 + countEm (c, s.substring(1));

}

substring s[1..]
i.e. s[1] …
s(s.length()-1)

