
Recitation	on	analysis	of	algorithms



Formal	definition	of	O(n)

We	give	a	formal	definition	and
show	how	it	is	used:

f(n)				is			 O(g(n))
iff
There	is	a	positive	constant	c
and	a	real	number	N such	that:
f(n)		≤		c	*	g(n)			 for	n ≥	N

Let	f(n) and	g(n) be	two	
functions.
f(n)	>=	0	and	g(n)	>=	0.

Example:
f(n)	=	n	+	6
g(n)	=	n
We	show	that	n+6 is	O(n)

n	+	6				---this	is	f(n)
<=							<if	6	<=	n,	write	as>

n	+	n
= <arith>

2*n
<choose	c	=	2>

=				c*n				---this	is	c	*	g(n)

So	choose	c	=	2	and	N	=	6



What	does	it	mean?

f(n)				is			 O(g(n))
iff
There	is	a	positive	constant	c	
and a	real	number	x such	that:

f(n)		≤		c	*	g(n)			 for	n ≥	N

Let	f(n) and	g(n) be	two	
functions.
f(n)	>=	0	and	g(n)	>=	0.

We	showed	that		n+6 is			O(n).
In	fact,	you	can	change	the	6 to	
any	constant	c you	want	and	
show	that					n+c is		O(n)

It	means	that	as	n gets	larger	and	
larger,	any	constant	c that	you	
use	becomes	meaningless	in	
relation	to	n,	so	throw	it	away.

The	difference	between	
executing	1,000,000	steps	and	
1,000,0006 is	insignificant

An	algorithm	that	executes	O(n)
steps	on	input	of	size	n is	called	
a	linear	algorithm



Oft-used	execution	orders

In	the	same	way,	we	can	prove	these	kinds	of	things:

1. log(n)		+	20												 is					O(log(n))	 (logarithmic)
2. n +	log(n)															 is	 O(n) (linear)
3. n/2		and		3*n are		 O(n)
4. n	*	log(n)		+	n					 is	 n	*	log(n)
5. n2		+	2*n	+	6							 is O(n2) (quadratic)
6. n3 +	n2 is O(n3) (cubic)
7. 2n +	5n									 is O(2n) (exponential)



Understand?	Then	use	informally

1. log(n)		+	20												 is					O(log(n))	 (logarithmic)
2. n +	log(n)															 is	 O(n) (linear)
3. n/2		and		3*n are		 O(n)
4. n	*	log(n)		+	n					 is	 n	*	log(n)
5. n2		+	2*n	+	6							 is O(n2) (quadratic)
6. n3 +	n2 is O(n3) (cubic)
7. 2n +	5n									 is O(2n) (exponential)

Once	you	fully	understand	the	concept,	you	can	use	it	
informally.	Example:

An	algorithm	executes	(7*n	+	6)	/	3		+		log(n)					steps.
It’s	obviously	linear,	i.e.	O(n)



Some	Notes	on	O()
• Why	don’t	logarithm	bases	matter?
– For	constants	x,	y:	O(logx n)		=		O((logx y)(logy n))
– Since	(logx y)	is	a	constant,	O(logx n)	=	O(logy n)	

• Usually:	O(f(n))	× O(g(n))		=		O(f(n)	× g(n))
– Such	as	if	something	that	takes	g(n)	time	for	each	of	f(n)	
repetitions	.	.	.	(loop	within	a	loop)

• Usually:	O(f(n))	+	O(g(n))	=	O(max(f(n),	g(n)))
– “max”	is	whatever’s	dominant	as	n	approaches	infinity
– Example:	O((n2-n)/2)		=		O((1/2)n2	+	(-1/2)n)	=	O((1/2)n2)	

=		O(n2)



runtimeof MergeSort

/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {

if (h >= k) return;

int e= (h+k)/2;
mS(b, h, e); 
mS(b, e+1, k); 
merge(b, h, e, k);    

}

Throughout, we 
use mS for 

mergeSort, to 
make slides 

easier to read

We will count the number of comparisons mS makes

Use T(n) for the number of array element 
comparisons that mS makes on an array of size n



Runtime

public static void mS(Comparable[] b, int h, int k) {
if (h >= k) return;

int e= (h+k)/2;
mS(b, h, e); 
mS(b, e+1, k); 
merge(b, h, e, k);    

}

T(0)	=	0
T(1)	=	0

Use T(n) for the number of array 
element comparisons that mS makes 
on an array of size n



Runtime

Recursion: T(n) = 2 * T(n/2) + comparisons made in merge

public static void mS(Comparable[] b, int h, int k) {
if (h >= k) return;

int e= (h+k)/2;
mS(b, h, e); 
mS(b, e+1, k); 
merge(b, h, e, k);    

}

Simplify	calculations:	assume	n	is	a	power	of	2



/** Sort b[h..k].
Pre: b[h..e] and b[e+1..k] are sorted.*/

public static void merge (Comparable b[], int h, int e, int k) {
Comparable[] c= copy(b, h, e);
int i= h; int j= e+1; int m= 0;
/* inv: b[h..i-1] contains its final, sorted values

b[j..k] remains to be transferred
c[m..e-h] remains to be transferred */

for (i= h; i != k+1;  i++) {
if (j <= k && (m > e-h || b[j].compareTo(c[m]) <= 0)) {

b[i]= b[j]; j++;
}
else {

b[i]= c[m]; m++;
}

}
}

b   final, sorted             free              to be moved
h                      i j                  k

c free              to be moved
0                  m                 e-h



/** Sort b[h..k].   Pre: b[h..e] and b[e+1..k] are already sorted.*/
public static void merge (Comparable b[], int h, int e, int k) {

Comparable[] c= copy(b, h, e);

int i= h; int j= e+1; int m= 0;

for (i= h; i != k+1;  i= i+1) {
if (j <= k && (m > e-h || b[j].compareTo(c[m]) <= 0)) {

b[i]= b[j]; j= j+1;
}
else {

b[i]= c[m]; m= m+1;
}

}
}

O(e+1-h)

Loop body: O(1).
Executed k+1-h times.

Number of array element comparisons is the 
size of the array segment – 1.
Simplify: use the size of the array segment
O(k-h) time



Runtime

public static void mS(Comparable[] b, int h, int k) {
if (h >= k) return;     
int e= (h+k)/2;           
mS(b, h, e);                T(e+1-h) comparisons
mS(b, e+1, k); T(k-e) comparisons
merge(b, h, e, k);    (k+1-h) comparisons

}

Use T(n) for number of array element comparisons to 
mergesort an array segment of size n

Thus:  T(n) < 2 T(n/2)  +  n, with T(0) = 0, T(1) = 0

We show how to do an analysis, assuming n is a power of 2 
(just to simplify the calculations)



Runtime
Thus, for any n a power of 2, we have

T(1) = 0

T(n) = 2*T(n/2)  +  n     for n > 1

We can prove that

T(n) = n lg n
lg n  means log2 n



Proof	by	recursion	tree	of	T(n)	=	n	lg n	

T(n) = 2*T(n/2)  +  n, for n > 1, a power of 2, and T(1) = 0

T(n)                                   merge time at level

T(n/2)                           T(n/2)                             n          = n                                   

T(n/4)          T(n/4)            T(n/4)        T(n/4)              2(n/2)     = n                                   

T(2)       T(2)    T(2)     T(2)   T(2)    T(2)    T(2)     T(2)       (n/2)2     = n                                   

lg n	
levels

.

.

.

.

.

.

.

.

.

Each level requires n comparisons to merge. lg n levels.
Therefore T(n) = n lg n      mergeSort has time O(n lg n)



MergeSort vs QuickSort

• Covered	QuickSort in	Lecture
• MergeSort requires	extra	space	in	memory
– The	way	we’ve	coded	it,	it	needs	that	extra	array
– QuickSort is	an	“in	place”	or	“in	situ”	algorithm.	No	extra
array.	But	it	does	require	space	for	stack	frame	for		re-
cursive	calls.	Naïve	algorithm:	O(n),	but	can	make	O(log	n)

• Both	have	“average	case”	O(n	lg n)	runtime
– MergeSort always	has	O(n	lg n)	runtime
– Quicksort	has	“worst	case”	O(n2)	runtime
• Let’s	prove	it!



Quicksort

• Pick	some	“pivot”	value	in	the	array	
• Partition	the	array:
– Finish	with	the	pivot	value	at	some	index	j
– everything	to	the	left	of	j	≤	the	pivot
– everything	to	the	right	of	j		≥	the	pivot

• Run	QuickSort on	b[h..j-1] and	b[j+1..k]

<= x                x           >= x                                               
h                              j                           k            



Runtime	of	Quicksort

• Base	case:	array	segment	of	0	or	1	
elements	takes	no	comparisons
T(0)	=	T(1)	=	0

• Recursion:	
– partitioning	an	array	segment	of	n
elements	takes	n	comparisons	to	
some	pivot

– Partition	creates	length	m and	r
segments	(where	m	+	r	=	n-1)

– T(n)	=	n	+	T(m)	+	T(r)

/** Sort b[h..k] */
public static void QS

(int[] b, int h, int k) {
if (k – h < 1) return;
int j=  partition(b, h, k);
QS(b, h, j-1); 
QS(b, j+1, k);

}



Runtime	of	Quicksort

• T(n)	=	n	+	T(m)	+	T(r)
– Look	familiar?

• If	m	and	r	are	balanced	
(m	≈	r	≈	(n-1)/2),	we	know	
T(n)	=	n	lg n.

• Other	extreme:	
– m=n-1,	r=0
– T(n)	=	n	+	T(n-1)	+	T(0)

/** Sort b[h..k] */
public static void QS

(int[] b, int h, int k) {
if (k – h < 1) return;
int j=  partition(b, h, k);
QS(b, h, j-1); 
QS(b, j+1, k);

}



Worst	Case	Runtime	of	Quicksort

• When	T(n)	=	n	+	T(n-1)	+	T(0)
• Hypothesis:	T(n)	=	(n2 – n)/2
• Base	Case:	T(1)	=	(12 –1)/2=0
• Inductive	Hypothesis:

assume	T(k)=(k2-k)/2
T(k+1)	=	k	+	(k2-k)/2 +	0																							

=	(k2+k)/2
=	((k+1)2 –(k+1))/2

• Therefore,	for	all	n	≥	1:
T(n)	=	(n2 – n)/2	=	O(n2)

/** Sort b[h..k] */
public static void QS

(int[] b, int h, int k) {
if (k – h < 1) return;
int j=  partition(b, h, k);
QS(b, h, j-1); 
QS(b, j+1, k);

}



Worst	Case	Space	of	Quicksort

You	can	see	that	in	the	worst	case,	the	
depth	of	recursion	is	O(n).	Since	each	
recursive	call	involves	creating	a	new	
stack	frame,	which	takes	space,	in	the	
worst	case,	Quicksort	takes	space	O(n).
That	is	not	good!

To	get	around	this,	rewrite	QuickSort so	
that	it	is	iterative	but	it	sorts	the	smaller	
of	two	segments	recursively.	It	is	easy	to	
do.	The	implementation	in	the	java	class	
that	is	on	the	website	shows	this.

/** Sort b[h..k] */
public static void QS

(int[] b, int h, int k) {
if (k – h < 1) return;
int j=  partition(b, h, k);
QS(b, h, j-1); 
QS(b, j+1, k);

}


