Recitation on analysis of algorithms



Formal definition of O(n)

We give a formal definition and
show how it is used:

f(n) is  O(g(n))
ff

There is a positive constant c
and a real number N such that:

f(n) < c*g(n) forn>N

Example:
f(n)=n+6

g(n)=n
We show that n+6 is O(n)

Let f(n) and g(n) be two
functions.
f(n) >=0and g(n) >=0.

n+6 ---thisis f(n)
<= <if 6 <= n, write as>
n+n

<arith>
2*n
<choose c = 2>
= ¢*n --thisisc * g(n)

Sochoosec=2and N=6



What does it mean?

f(n) is  O(g(n))
ff

There is a positive constant c

and a real number x such that:

f(n) < c*g(n) forn>N

Let f(n) and g(n) be two
functions.
f(n) >=0and g(n) >=0.

We showed that n+6 is O(n).
In fact, you can change the 6 to
any constant c you want and
show that n+c is O(n)

An algorithm that executes O(n)
steps on input of size n is called
a linear algorithm

It means that as n gets larger and
larger, any constant c that you
use becomes meaningless in
relation to n, so throw it away.

The difference between
executing 1,000,000 steps and
1,000,0006 is insignificant




Oft-used execution orders

In the same way, we can prove these kinds of things:

N o U bk wNh e

log(n) + 20 is
n + log(n) IS
n/2 and 3*n are
n *log(n) +n is
n? +2*n+6 is
n3 + n2 IS
2" 450 IS

O(log(n))
O(n)

O(n)

n * log(n)
o(n?)
o(n3)
o(2"

(logarithmic)
(linear)

(quadratic)
(cubic)

(exponential)



Understand? Then use informally

1. log(n) + 20 is
2. n+log(n) is
3. n/2 and 3*n are
4. n *log(n) +n is
5. n? +2%n+ 6 is
6. n3 + n2 IS
7. 2" +5n IS

O(log(n))
O(n)

O(n)

n * log(n)
o(n?)
o(n3)
o(2"

(logarithmic)
(linear)

(quadratic)
(cubic)

(exponential)

Once you fully understand the concept, you can use it

informally. Example:

An algorithm executes (7*n+6) /3 + log(n) steps.
It’s obviously linear, i.e. O(n)



Some Notes on O()

« Why don’t logarithm bases matter?
— For constants x, y: O(log, n) = O((log, y)(Iogy n))
— Since (log, y) is a constant, O(log, n) = O(Iogy n)

* Usually: O(f(n)) x O(g(n)) = O(f(n) x g(n))

— Such as if something that takes g(n) time for each of f(n)
repetitions . . . (loop within a loop)

e Usually: O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
— “max” is whatever’s dominant as n approaches infinity

— Example: O((n%-n)/2) = O((1/2)n?+ (-1/2)n) = O((1/2)n?)
= 0(n?)



runtimeof MergeSort

/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
if (h >=Kk) return;

Throughout, we

int e= (h+k)/2; use mS for
mS(b, h, ¢); mergeSort, to
mS(b, e+1, k); make slides
} merge(b, h, ¢, k); easier to read

We will count the number of comparisons mS makes

Use T(n) for the number of array element
comparisons that mS makes on an array of size n



Runtime

public static void mS(Comparable[] b, int h, int k) {
if (h >=Kk) return,;

int e= (h+k)/2; T(0)=0
mS(b, h, e); T(1)=0
mS(b, et+1, k);

merge(b, h, e, k);

Use T(n) for the number of array
clement comparisons that mS makes
on an array of size n



Runtime

public static void mS(Comparable[] b, int h, int k) {
if (h >=Kk) return;

int e= (h+k)/2;

mS(b, h, ¢);

mS(b, e+1, k);

merge(b, h, e, k);
)

Recursion: T(n) =2 * T(n/2) + comparisons made in merge

Simplify calculations: assume n is a power of 2



/** Sort b[h..k].
Pre: b[h..e] and b[e+1..k] are sorted.*/
public static void merge (Comparable b[], int h, int e, int k) {
Comparable[] c= copy(b, h, ¢);
int 1= h; int j= e+1; int m= 0;
/* inv: b[h..1-1] contains 1ts final, sorted values
b[j..k] remains to be transferred
c[m..e-h] remains to be transferred */
for 1=h; 1!=k+1; 1++) {
if ] <=k && (m > e-h || b[j].compareTo(c[m]) <= 0)) {
b[i]=b[j]; j+;

} 0 m e-h
else { c| free to be moved
b[1]= ¢[m]; m++;
j h 1 ] k
J b | final, sorted free to be moved

b




/** Sort b[h..k]. Pre: b[h..e] and b[e+1..k] are already sorted.*/
public static void merge (Comparable b[], int h, int ¢, int k) {

Comparable[] c= copy(b, h, ¢); O(e+1-h)
int 1= h; int j= e+1; int m= 0;
for (i=h; 1!=k+1; i=1tl) {

if ] <=k && (m > e-h || b[j].compareTo(c[m]) <= 0)) {
b[1]=blj]; j=1+1;

ilse { Loop body: O(1).
b[i]= ¢[m]; m= m+1; Executed k+1-h times.
h
h
} Number of array element comparisons is the

size of the array segment — 1.

Simplify: use the size of the array segment
O(k-h) time



Runtime

We show how to do an analysis, assuming n 1s a power of 2
(just to simplify the calculations)

Use T(n) for number of array element comparisons to
mergesort an array segment of size n

public static void mS(Comparable[] b, int h, int k) {
if (h >=Kk) return,;
int e= (h+k)/2;
mS(b, h, ¢); T(e+1-h) comparisons
mS(b, e+1, k); T(k-e) comparisons
merge(b, h, e, k); (k+1-h) comparisons
h

Thus: T(n) <2 T(n/2) + n, with T(0) =0, T(1) =0



Runtime

Thus, for any n a power of 2, we have

T(1)=0
T(n)=2*T(n/2) + n forn>1
We can prove that

T(n)=nlgn
lg n means log, n



Proof by recursion tree of T(n) =nlgn

T(n)=2*T(n/2) + n,forn> 1, apowerof 2, and T(1)=0

T(n) merge time at level
4 /\
lg n T(n/2) T(n/2) n =n
levels / \ /\
T(n/4) T(n/4) T(n/4) T(n/4) 2(n/2) =n

NANTANA

VT2 TQ) TQ) TQ) TQ) TQ2) TQ) TQ2) @22 =n

Each level requires n comparisons to merge. Ig n levels.
Therefore T(n) =nlgn  mergeSort has time O(n 1g n)



MergeSort vs QuickSort

* Covered QuickSort in Lecture
* MergeSort requires extra space in memory
— The way we’ve coded it, it needs that extra array
— QuickSort is an “in place” or “in situ” algorithm. No extra

array. But it does require space for stack frame for re-
cursive calls. Naive algorithm: O(n), but can make O(log n)

* Both have “average case” O(n Ig n) runtime
— MergeSort always has O(n Ig n) runtime
— Quicksort has “worst case” O(n?) runtime
e Let’s prove it!



Quicksort — x

Pick some “pivot” value in the array

Partition the array:

— Finish with the pivot value at some index j
— everything to the left of j < the pivot

— everything to the right of j > the pivot
Run QuickSort on blh..j-1] and b[j+1..k]




Runtime of Quicksort

* Base case: array segmentof Oor 1 /%% Sort b[h..k] */
elements takes no comparisons rlbiFe st Tl O
T(0)=T(1)=0 b int b int k

e Recursion: (int[] b, int h, int k) {

if (k—h <1) return;

— partitioning an array segment of n

elements takes n comparisons to int j= partition(b, h, k);

some pivot QS(b, h, j-1);
— Partition creates length m and r QS(b, j+1, k);
segments (where m + r = n-1) )

— T(n)=n+T(m) + T(r)



Runtime of Quicksort

T(n) =n+T(m) + T(r) /%% Sort b[h..k] */
— Look familiar? public static void QS
I(]:n m~arnf (rn a{)e/tznilwci: y (int[] b, int h, int k) {
T(n;z ; g y WE KNO if (k—h <1) return;
Other extreme: ntJ= pa.rt1t10n(b, B,
— m=n-1 r=0 QS(b, ha.]_l)a
QS(b, j+1, k);

— T(n) =n+T(n-1) + T(0)



Worst Case Runtime of Quicksort

When T(n) = n + T(n-1) + T(0) /%% Sort b[h..k] */
Hypothesis: T(n) = (n - n)/2 public static void QS

Base Case: T(1) = (12-1)/2=0 (int[] b, int h, int k)
Inductive Hypothesis: if (k —h < 1) return;

assume T(k)=(k?*-k)/2

T(k+1) = k + (k2-k)/2 + 0 int j= partition(b, h, k);

= (k2+k)/2 QS(b, h, j-1);
= ((k+1)2 —(k+1))/2 QS(b, j+1, k);
Therefore, forall n > 1: }

T(n) = (n?>-n)/2=0(n?)



Worst Case Space of Quicksort

You can see that in the worst case, the /%% Sort b[h. k] */
depth of recursion is O(n). Since each

: : . public static void QS
recursive call involves creating a new

stack frame, which takes space, in the (int[] b, int h, int k) {
worst case, Quicksort takes space O(n). if (k —h <1) return;
That is not good! int j= partition(b, h, k);

QS(b, ha J-l),
To get around this, rewrite QuickSort so QS(b, j+1, k);
that it is iterative but it sorts the smaller }
of two segments recursively. It is easy to
do. The implementation in the java class
that is on the website shows this.



