
JAVA GENERICS
Lecture 17
CS2110 – Spring 2017

Photo	credit:	Andrew	Kennedy	

Textbook and Homework

Generics: Appendix B
Generic types we discussed: Chapters 1-3, 15

Useful tutorial:

docs.oracle.com/javase/tutorial/extra/generics/index.html

2

How to think about/implement sharedAncestorOf
3

G

A

B

D E F

C
B.sharedAncestorOf(D, G): B

A.sharedAncestorOf(D, I): B

A.sharedAncestorOf(F, G): F

Use ParentOf for the last one?

 A.getParentOf(I) to get H.
Then A.getParentOf(H) to get G.
Then A.getParentOf(G) to get F.
Then ...
Searching the tree over and over and over!
Terrible!

H

I

How to think about/implement sharedAncestorOf
4

G

A

B

D E F

C
A.sharedAncestorOf(D, I): B

How about getting the routes to D and I?

H

I

Route to D:

Route to I:

These two lists have at least one node in common:
A. They may have more. In this case, B is also in
both lists. The last one that is in both lists is the
shared ancestor!

How to think about/implement sharedAncestorOf
5

We have these two linked lists. They are the same for
a number of nodes in the beginning and then perhaps
they diverge. They may both continue, or one or both
might end there.

The shared ancestor is the last one that is on both lists!

case 1

case 2

How to think about/implement sharedAncestorOf
6

How to write a loop that starts at the
beginning and moves through both
lists in synched fashion?
Can’t use foreach.
Don’t want to use stuff
to right because we
don’t know cost of
c1.get(i)

c1
c2

i= 0;
while (…) {
 n1= c1.get(i);
 n2= c2.get(i);
 …
 i= i+1;

Use the
Iterators of c1
and c2!
We do it in
Eclipse

Moral: Spend time
with pencil and

paper away from
Eclipse to think

problem through!

c1
c2

Early versions of Java lacked generics…
7

Java Collections

interface Collection {
 /** Return true iff the collection contains o */
 boolean contains(Object o);

 /** Add ob to the collection; return true iff
 * the collection is changed. */
 boolean add(Object ob);

 /** Remove ob from the collection; return true iff
 * the collection is changed. */
 boolean remove(Object ob);
 ...
}

8

Java Collections

Collection	c	=	...	
c.add(“Hello”)	
c.add(“World”);	
...	
for	(Object	ob	:	c)	{	
		String	s=	(String)	ob;	
		System.out.println(s.length	+	“	:	“	+	s.length());	
}	

Lack of generics was painful because programmers had to
manually cast.

… and people often made mistakes!

9

Using Java Collections

String	[]	a	=	...	
a[0]=	(“Hello”)	
a[1]=	(“World”);	
...	
for	(String	s	:	a)	{	
		System.out.println(s);	
}	

Limitation seemed especially awkward because built-in arrays
do not have the same problem!

In late 1990s, Sun Microsystems initiated a design process to add
generics to the language ...

10

Arrays → Generics

Object[]	a=	...	
String[]	a=	...	
Integer[]	a=	...	
Button[]	a=	...	
	

One can think of the array “brackets” as a kind of parameterized
type: a type-level function that takes one type as input and yields
another type as output

We should be able to do the same thing with object types
generated by classes!

11

Proposals for adding Generics to Java

PolyJ	 Pizza/GJ	 LOOJ	

With generics, the Collection interface becomes...

12

Generic Collections

interface	Collection<T>	{	
		/**	Return	true	iff	the	collection	contains	x	*/	
		boolean	contains(T	x);	
	
		/**	Add	x	to	the	collection;	return	true	iff		
				*	the	collection	is	changed.	*/	
		boolean	add(T	x);	
	
		/**	Remove	x	from	the	collection;	return	true	iff		
				*	the	collection	is	changed.	*/	
		boolean	remove(T	x);	
		...	
}	

13

Using Java Collections

Collection<String>	c=	...	
c.add(“Hello”)	
c.add(“World”);	
...	
for	(String	s	:	c)	{	
		System.out.println(s.length	+	“	:	“	+	s.length());	
}	

With generics, no casts are needed...

… and mistakes (usually) get caught!

14

Type checking as part of syntax check (compile time)

Collection<String>	c=	...	
c.add(“Hello”)		/*	Okay	*/	
c.add(1979);				/*	Illegal:	static	error!	*/	

The compiler can automatically detect uses of collections with
incorrect types...

Generally speaking,
 Collection<String>
behaves like the parameterized type
 Collection<T>
where all occurrences of T have been replaced byString.

Subtyping extends naturally to generic types.

15

Subtyping

interface	Collection<T>	{	...	}	
interface	List<T>	extends	Collection<T>	{	...	}	
class	LinkedList<T>	implements	List<T>	{	...	}	
class	ArrayList<T>	implements	List<T>	{	...	}	
	
	
/*	The	following	statements	are	all	legal.	*/	
List<String>	l=	new	LinkedList<String>();	
ArrayList<String>	a=	new	ArrayList<String>();	
Collection<String>	c=	a;	
l=	a	
c=	l;	

String is a subtype of object so...
...is LinkedList<String> a subtype of LinkedList<Object>?

16

Subtyping

LinkedList<String>	ls=	new	LinkedList<String>();	
LinkedList<Object>	lo=	new	LinkedList<Object>();	
	
lo=	ls;															//Suppose	this	is	legal	
lo.add(2110);									//Type-checks:	Integer	subtype	Object	
String	s	=	ls.get(0);	//Type-checks:	ls	is	a	List<String>	

But what would happen at run-time if we were able to actually
execute this code?

Java’s type system allows the analogous rule for arrays:

17

Array Subtyping

String[]	as=	new	String[10];	
Object[]	ao=	new	Object[10];	
	
ao=	as;									//Type-checks:	considered	outdated	design	
ao[0]=	2110;				//Type-checks:	Integer	subtype	Object	
String	s=	as[0];	//Type-checks:	as	is	a	String	array	

What happens when this code is run? TRY IT OUT!
It throws an ArrayStoreException! Because arrays are built into
Java right from beginning, it could be defined to detect such errors

We would like to rewrite the parameter declarations so this method
can be used for ANY list, no matter the type of its elements.

18

A type parameter for a method

/**	Replace	all	values	x	in	list	ts	by	y.	*/	
public	void	replaceAll(List<Double>	ts,	Double	x,	Double	y)	{	
		for	(int	i=	0;	i	<	ts.size();	i=	i+1)	
					if	(Objects.equals(ts.get(i),	x))	
								ts.set(i,	y);	
}	

Try replacing Double by some “Type parameter” T, and Java will
still complain that type T is unknown.

19

A type parameter for a method

/**	Replace	all	values	x	in	list	ts	by	y.	*/	
																														T												T									T	
public	void	replaceAll(List<Double>	ts,	Double	x,	Double	y)	{	
		for	(int	i=	0;	i	<	ts.size();	i=	i+1)	
					if	(Objects.equals(ts.get(i),	x))	
								ts.set(i,	y);	
}	

Somehow, Java must be told that T is a type parameter and not a
real type. Next slide says how to do this

Placing <T> after the access modifier indicates that T is to be
considered as a type parameter, to be replaced when method is
called.

20

A type parameter for a method

/**	Replace	all	values	x	in	list	ts	by	y.	*/	
public	<T>	void	replaceAll(List<T>	ts,	T	x,	T	y)	{	
		for	(int	i=	0;	i	<	ts.size();	i=	i+1)	
					if	(Objects.equals(ts.get(i),	x))	
								ts.set(i,	y);	
}	

Suppose we want to write a method to print every value in a
Collection<T>.

21

Printing Collections

void	print(Collection<Object>	c)	{	
		for	(Object	x	:	c)	{	
				System.out.println(x);	
		}	
}	
...		
Collection<Integer>	c=	...	
c.add(42);	
print(c);		/*	Illegal:	Collection<Integer>	is	not	a	
												*	subtype	of	Collection<Object>!	*/	

To get around this problem, Java’s designers added wildcards to
the language

22

Wildcards: introduce wildcards

void	print(Collection<?>	c)	{	
		for	(Object	x	:	c)	{	
				System.out.println(x);	
		}	
}	
...		
Collection<Integer>	c=	...	
c.add(42);	
print(c);			/*	Legal!	*/	

One can think of Collection<?> as a “Collection of some
unknown type of values”.

We can’t add values to collections whose types are wildcards ...

23

Wildcards

void	doIt(Collection<?>	c)	{	
		c.add(42);	/*	Illegal!	*/	
}	
...		
Collection<String>	c=	...	
doIt(c);			/*	Legal!	*/	

42 can be added to
•  Collection<Integer>
•  Collection<Number>
•  Collection<Object>
but c could be a Collection of
anything, not just supertypes of Integer

Sometimes it is useful to have some information about a
wildcard. Can do this by adding bounds...

24

Bounded Wildcards

void	doIt(Collection<?	super	Integer>	c)	{	
		c.add(42);	/*	Legal!	*/	
}	
...	
Collection<Object>	c=	...	
doIt(c);			/*	Legal!	*/	
Collection<Float>	c=	...	
doIt(c);			/*	Illegal!	*/	
	

Now c can only be a Collection
of some supertype of Integer,
and 42 can be added to any
such Collection

“? super” is useful when you are only giving values to the object,
such as putting values into a Collection

“? extends” is useful for when you are only receiving values from the
object, such as getting values out of a Collection.

25

Bounded Wildcards

void	doIt(Collection<?	extends	Shape>	c)	{	
		for	(Shape	s	:	c)	
					s.draw();	
}	
...		
Collection<Circle>	c=	...	
doIt(c);		/*	Legal!	*/	
Collection<Object>	c=	...	
doIt(c);		/*	Illegal!	*/	

Wildcards can be nested. The following receives Collections from an
Iterable and then gives floats to those Collections.

26

Bounded Wildcards

void	doIt(Iterable<?	extends	Collection<?	super	Float>>	cs)	{	
		for(Collection<?	super	Float>	c	:	cs)	
				c.add(0.0f);	
}	
...	
List<Set<Float>>	l=	...	
doIt(l);		/*	Legal!	*/	
Collection<List<Number>>	c=	...	
doIt(c);		/*	Legal!	*/	
Iterable<Iterable<Float>>	i=	...	
doIt(i);		/*	Illegal!	*/	
ArrayList<?	extends	Set<?	super	Number>>	a=	...	
doIt(a);		/*	Legal!	*/	
	

We skip over this in
lecture. Far too
intricate for everyone
to understand. We
won’t quiz you on
this.

Here’s the printing example again. Written with a method type-
parameter.

27

Generic Methods

<T>	void	print(Collection<T>	c)	{//	T	is	a	type	parameter	
		for	(T	x	:	c)	{	
				System.out.println(x);	
		}	
}	
...		
Collection<Integer>	c=	...	
c.add(42);	
print(c);		/*	More	explicitly:	this.<Integer>print(c)	*/	

But wildcards are preferred when just as expressive.

Suppose we want to catenate a list of lists into one list. We want
the return type to depend on what the input type is.

28

Catenating Lists

ls

3 8

6

2

5

7

Return this list
3 6 8 7 5 2

The return type depends on what the input type is.

29

Catenating Lists

/**	Return	the	flattened	version	of	ls.	*/	
<T>	List<T>	flatten(List<?	extends	List<T>>	ls)	{	
		List<T>	flat=	new	ArrayList<T>();	
		for	(List<T>	l	:	ls)	
					flat.addAll(l);	
		return	flat;	
}	
...	
List<List<Integer>>	is=	...	
List<Integer>	i=	flatten(is);	
List<List<String>>	ss=	...	
List<String>	s=	flatten(ss);	

Interface Comparable<T> declares a method for comparing one
object to another.

30

Interface Comparable

interface	Comparable<T>	{	
			/*	Return	a	negative	number,	0,	or	positive	number	
				*	depending	on	whether	this	is	less	than,		
				*	equal	to,	or	greater	than	that	*/	
		int	compareTo(T	that);	
}	

Integer, Double, Character, and String
are all Comparable with themselves

Type parameter: anything T that implements Comparable<T>
31

Our binary bearch

/**	Return	h	such	that	c[0..h]	<=	x	<	c[h+1..].	
		*	Precondition:	c	is	sorted	according	to	..	*/	
public	static	<T	extends	Comparable<T>>	
																			int	indexOf1(List<T>	c,	T	x)	{		
			int	h=	-1;		
			int	t=	c.size();		
			//	inv:	h	<	t		&&		c[0..h]	<=	x	<	c[t..]	
			while	(h+1	<	t)	{		
						int	e=	(h	+	t)	/	2;		
						if	(c.get(e).compareTo(x)	<=	0)		
										h=	e;		
						else	t=	e;	
				}	
return	h;		
}		

Type parameter: anything T that implements Comparable<T>
32

Those who fully Grok generics write:

/**	Return	h	such	that	c[0..h]	<=	x	<	c[h+1..].	
		*	Precondition:	c	is	sorted	according	to	..	*/	
public	static	<T	extends	Comparable<?	super	T>>	
															int	indexOf1(List<T>	c,	T	x)	{		
			int	h=	-1;		
			int	t=	c.size();		
			//	inv:	h	<	t		&&		c[0..h]	<=	x	<	c[t..]	
			while	(h+1	<	t)	{		
						int	e=	(h	+	t)	/	2;		
						if	(c.get(e).compareTo(x)	<=	0)		
										h=	e;		
						else	t=	e;	
				}	
return	h;		
}		

Anything
that is a
superclass
of T.

Don’t be concerned with this!
You don’t have to fully
understand this.

