
THREADS AND
CONCURRENCY

Lecture 20 – CS2110 – Fall 2009

What is a Thread?
2

• A separate process that can perform a
computational task independently and
concurrently with other threads

–Most programs have only one thread
–GUIs have a separate thread, the event

dispatching thread
–A program can have many threads
–You can create new threads in Java

What is a Thread?
3

• On many machines, threads are an illusion
–Not all machines have multiple processors
–But a single processor can share its time among

all the active threads
–Implemented with support from underlying

operating system or virtual machine
–Gives the illusion of several threads running

simultaneously
• But modern computers often have “multicore”

architectures: multiple CPUs on one chip

Why Multicore?
4

Moore’s Law: Computer speeds and memory densities
nearly double each year

But a fast computer runs hot
5

Power dissipation rises as the square of the CPU
clock rate
Chips were heading towards melting down!

Multicore: with four
CPUs (cores) on one chip,
even if we run each at half
speed we get more overall
performance!

Concurrency (aka Multitasking)
6

• Refers to situations in which several
threads are running simultaneously

• Special problems arise
–race conditions
–deadlock

Task Manager
7

• The operating system provides
support for multiple “processes”

• In reality there there may be fewer
processors than processes

• Processes are an illusion too – at the
hardware level, lots of multitasking

– memory subsystem

– video controller

– buses

– instruction prefetching

Threads in Java
8

• Threads are instances of the class Thread
– can create as many as you like

• The Java Virtual Machine permits multiple
concurrent threads

– initially only one thread (executes main)

• Threads have a priority
– higher priority threads are executed preferentially
– a newly created Thread has initial priority equal to

the thread that created it (but can change)

Creating a new Thread (Method 1)
9

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeThread p = new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

can call run() directly –
the calling thread will run it

or, can call start()
– will run run() in new thread

Creating a new Thread (Method 2)
10

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

Example
11

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
12

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(4);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
13

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(6);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
14

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

allows other waiting
threads to run

Stopping Threads
15

• Threads normally terminate by returning from
their run method

•stop(), interrupt(), suspend(),
destroy(), etc. are all deprecated

– can leave application in an inconsistent state
– inherently unsafe
– don't use them
– instead, set a variable telling the thread to stop itself

Daemon and Normal Threads
16

• A thread can be daemon or normal
– the initial thread (the one that runs main) is normal

• Daemon threads are used for minor or ephemeral
tasks (e.g. timers, sounds)

• A thread is initially a daemon iff its creating thread is
– but this can be changed

• The application halts when either
– System.exit(int) is called, or
– all normal (non-daemon) threads have terminated

Race Conditions
17

• A race condition can arise when two or more
threads try to access data simultaneously

• Thread B may try to read some data while
thread A is updating it

– updating may not be an atomic operation
– thread B may sneak in at the wrong time and read

the data in an inconsistent state

• Results can be unpredictable!

Example – A Lucky Scenario
18

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops � stack is now empty
3. thread B tests stack.isEmpty() � true
4. thread B just returns – nothing to do

Example – An Unlucky Scenario
19

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() � false
2. thread B tests stack.isEmpty() � false
3. thread A pops � stack is now empty
4. thread B pops � Exception!

Solution – Locking
20

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Solution – Locking
21

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

is equivalent to

File Locking
22

• In file systems, if two or more processes
could access a file simultaneously, this
could result in data corruption

• A process must open a file to use it – gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in
Java

Deadlock
23

•The downside of locking – deadlock

•A deadlock occurs when two or more
competing threads are waiting for the other
to relinquish a lock, so neither ever does

•Example:
–thread A tries to open file X, then file Y
–thread B tries to open file Y, then file X
–A gets X, B gets Y
–Each is waiting for the other forever

wait/notify
24

•A mechanism for event-driven activation of
threads

•Animation threads and the GUI event-
dispatching thread in can interact via
wait/notify

wait/notify
25

boolean isRunning = true;

public synchronized void run() {
while (true) {

while (isRunning) {
//do one step of simulation

}
try {

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

animator:

Summary
26

Use of multiple processes and multiple threads within each
process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)

But when using threads, beware!
Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions
Yet synchronization also creates risk of deadlocks
Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)

Reminder

A “race condition” arises if two threads try and
share some data
One updates it and the other reads it, or both
update the data
In such cases it is possible that we could see the data
“in the middle” of being updated

A “race condition”: correctness depends on the update
racing to completion without the reader managing to
glimpse the in-progress update
Synchronization (aka mutual exclusion) solves this

27

Java Synchronization (Locking)
28

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Java Synchronization (Locking)
29

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

is equivalent to

How locking works

Only one thread can “hold” a lock at a time
If several request the same lock, Java somehow decides
which will get it

The lock is released when the thread leaves the
synchronization block

synchronized(someObject) { protected code }
The protected code has a mutual exclusion guarantee:
At most one thread can be in it

When released, some other thread can acquire the
lock

30

Locks are associated with objects

Every Object has its own built-in lock
Just the same, some applications prefer to create
special classes of objects to use just for locking
This is a stylistic decision and you should agree on it
with your teammates or learn the company policy if you
work at a company

Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

31

File Locking: Same idea
32

• In file systems, if two or more processes
could modify a file simultaneously, this could
result in data corruption

• A process must open a file to modify it –
gives exclusive access until it is closed

• Multiple processes can open the same
file to read it

• This file locking synchronization rule is
enforced by the operating system

Deadlock
33

•The downside of locking – deadlock

•A deadlock occurs when two or more
competing threads each hold a lock, and
each are waiting for the other to relinquish a
lock, so neither ever does

•Example:
– thread A tries to open file X, then file Y
– thread B tries to open file Y, then file X
– A gets X, B gets Y
– Each is waiting for the other forever

Visualizing deadlock
34

Process
A

Process
BX Y

A has a lock on X
wants a lock on Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cycles

They can include 2 or more threads or processes in
a waiting cycle
Other properties:

The locks need to be mutually exclusive (no sharing of
the objects being locked)
The application won’t give up and go away (no timer
associated with the lock request)
There are no mechanisms for one thread to take locked
resources away from another
thread – no “preemption”

35

wait/notify
36

•A mechanism for event-driven activation of
threads

•Animation threads and the GUI event-
dispatching thread in can interact via
wait/notify

wait/notify
37

boolean isRunning = true;

public synchronized void run() {
while (true) {

while (isRunning) {
//do one step of simulation

}
try {

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

animator:

A producer/consumer example

Thread A produces loaves of bread and puts them
on a shelf with capacity K

For example, maybe K=10

Thread B consumes the loaves by taking them off
the shelf

Thread A doesn’t want to overload the shelf
Thread B doesn’t wait to leave with empty arms

38

producer shelves consumer

Producer/Consumer example
39

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

public synchronized void produce() {
while(nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {
while(nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall(); // Signal: shelf not full

}
}

Things to notice

Wait needs to wait on the same Object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

Notify wakes up just one waiting thread, notifyall
wakes all of them up

We used a while loop because we can’t predict
exactly which thread will wake up “next”

40

Trickier example

Suppose we want to use locking in a BST
Goal: allow multiple threads to search the tree
But don’t want an insertion to cause a search thread to
throw an exception

41

Code we’re given is unsafe
42

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
right.put(goal, value);

}
}

}

Attempt #1

Just make both put and get synchronized:
public synchronized Object get(…) { … }
public synchronized void put(…) { … }

Let’s have a look….

43

Safe version: Attempt #1
44

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
right.put(goal, value);

}
}

}

Attempt #1

Just make both put and get synchronized:
public synchronized Object get(…) { … }
public synchronized void put(…) { … }

This works but it kills ALL concurrency
Only one thread can look at the tree at a time
Even if all the threads were doing “get”!

45

Visualizing attempt #1
46

Cathy
cd4

Freddy
netid: ff1

Martin
mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
gb0

Put(Ernie, eb0)
Get(Martin)… must

wait!
Get(Martin)…

resumes

Attempt #2

put uses synchronized in method declaration
So it locks every node it visits

get tries to be fancy:

Actually this is identical to attempt 1! It only looks
different but in fact is doing exactly the same thing

47

// Returns value if found, else null
public Object get(Object goal) {

synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}
}

Attempt #3

Risk: “get” (read-only) threads sometimes look at nodes without
locks, but “put” always updates those same nodes.
According to JDK rules this is unsafe

48

// Returns value if found, else null
public Object get(Object goal) {

boolean checkLeft = false, checkRight = false;
synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) {

if (left==null) return null; else checkLeft = true;
} else {

if(right==null) return null; else checkRight = true;
}

}
if (checkLeft) return left.get(goal);
if (checkRight) return right.get(goal);

/* Never executed but keeps Java happy */ return null;
}

relinquishes lock on this – next
lines are “unprotected”

Attempt #3 illustrates risks

The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various ways

Issue: put updates several fields:
parent.left (or parent.right) for its parent node
this.left and this.right and this.name and this.value

When locking is used correctly, multicore hardware will
correctly implement the updates
But if you look at values without locking, as we did in
Attempt #3, hardware can malfunction!

49

Why can hardware malfunction?

Issue here is covered in cs3410 & cs4410
Problem is that the hardware was designed under the
requirement that if threads contend to access shared
memory, then readers and writers must use locks
Solutions #1 and #2 used locks and so they worked, but
had no concurrency
Solution #3 violated the hardware rules and so you could
see various kinds of garbage in the fields you access!

In fact it is quite hard to design concurrent data
structures that respect the hardware rules

50

Summary
51

Use of multiple processes and multiple threads within each
process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)
But when using threads, beware!

Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions
Yet synchronization also creates risk of deadlocks
Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic (covered
in more detail in cs3410 and cs4410)

ECE/CS 3420, looks at why the hardware has this issue but not
from the perspective of writing concurrent code

