
���1CS2110 Fall 2014 Assignment A3. Linked Lists Due on CMS by Monday, 22 September

Linked Lists	

Preamble!
This assignment introduces you to the beginning of our discussions on data structures. In this assignment, you

will implement a data structure called a doubly linked list. Please read the whole handout before starting. The end
contains important hints on testing.	

At the end of this handout, we tell you what and how to submit. We will ask you for the time spent in doing this
assignment, so please keep track of the time you spend on it. We will report the minimum, average, and maximum.	

Learning objectives	

• Learn about and master the complexities of doubly linked lists.	

• Learn a little about inner classes.	

• Learn and practice a sound methodology in writing and debugging a small but intricate program. 	

Collaboration policy and academic integrity	

You may do this assignment with one other person. Both members of the group should get on the CMS and do
what is required to form a group well before the assignment due date. Both must do something to form the group:
one proposes, the other accepts.	

People in a group must work together. It is against the rules for one person to do some programming on this as-
signment without the other person sitting nearby and helping. Take turns "driving" —using the keyboard and mouse.	

With the exception of your CMS-registered group partner, you may not look at anyone else's code, in any form,
or show your code to anyone else (except the course staff), in any form. You may not show or give your code to an-
other student in the class.	

Getting help	

If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE
IMMEDIATELY —an instructor, a TA, a consultant. Do not wait. A little in-person help can do wonders. See the
course homepage for contact information.	

Singly linked lists!
The diagram on the left below, represents the list of values [6, 7, 3]. The leftmost box is an object called the

header. It contains two values: the size of the list, 3, and a pointer to the first node of the list. Each of the other three
boxes is an object of a class M; it contains the value of an element of the list and a pointer to the next node of the list
—the last node has pointer null since there are no more nodes in the list. This data structure is call a singly linked
list, or just linked list.	

!
!
!
One chooses a data structure that optimizes a program in some way, making the most frequently used operations

as fast as possible. For example, maintaining a list in an array has the advantage that any element, say number i, can
be referenced in constant time, using (typically) b[i]. But maintaining a list in an array has disadvantages: (1) The
size of the array has to be determined when the array is first created, and (2) Inserting or removing values at the be-
ginning takes time proportional to the size of the list.	

	
 	
 	
 LL@7

	
 	
 	
 N@1head

	
 	
 	
 	
 3size
	
 LL@7d

	
 	
 N@8succ

	
 	
 	
 	
 6val

	
 	
 	
 M@1

	
 	
 	
 	
 7val

	
 	
 N@2succ

	
 	
 	
 M@8

	
 	
 	
 	
 3val

	
 nullsucc

	
 	
 	
 M@2

���2CS2110 Fall 2014 Assignment A3. Linked Lists Due on CMS by Monday, 22 September

A singly linked list has these advantages: (1) The list can be any size, and (2) Inserting (or removing) a value at
the beginning can be done in constant time. It takes just a few operations, bounded above by some constant: create a
new object and change a few pointers. On the other hand, to reference element i of the list takes time proportional
to i—one has to sequence through all the nodes 0..i-1 to find it.	

Doubly linked lists!
A singly linked list has field head in the header and field succ in each node, as shown above. A doubly linked

list has, in addition, a field tail in the header and a field pred in each node, as shown below. In the diagram be-
low, one can traverse the list of values in reverse: first d.tail.val, then d.tail.pred.val, then
d.tail.pred.pred.val. This doubly linked lists represents the same sequence [6, 7, 3] as the singly linked list
given above —but the data structure lets us easily enumerate the values in reverse: [3, 7, 6] as well as forward.	

The major advantage of a doubly linked list over a singly linked list is that, given a node e (containing some-
thing like N@8), one can get to e’s predecessor and successor in constant time. For example, removing node e from
the list can be done in constant time, but in a singly linked list, the time may depend on the length of the list (why?).	

You will be implementing a doubly linked list using the representation below. The header will be of class
DLinkedList (abbreviated DLL below), and nodes will objects of class Node (abbreviated N below), Study this
diagram carefully. All further work rests on understanding this data structure. 	

!
!

!
!
We often write such linked lists without the tabs on the objects and even without names in the pointer fields, as

shown below. No useable information is lost, since the arrows take the place of the object pointer-names.	

!
!
!

!
!
The doubly linked list allows the following operations to be executed in “constant time” —just a few assign-

ments and perhaps an if-statement are necessary: prepend a value (insert an element at the beginning of the list),
append a value, insert a value before or after a given element, and delete a value. In an array implementation of such
a list, most of these operations could take time proportional to the length of the list in the worst case.	

This assignment	

This assignment gives you a skeleton for class DLinkedList<E> (where E is any type). The class also con-

tains a definition of Node (it is an inner class; see below) and asks you to complete the several methods. The meth-
ods to write are indicated in the skeleton. You must also develop a JUnit test class, called DLinkedListTester,
that thoroughly tests the methods you write. We give directions on writing and testing/debugging below.	

	
 	
 	
 DLL@7

	
 	
 	
 N@1head

	
 	
 	
 	
 3size

	
 	
 	
 N@2tail

DLL@7d

	
 	
 N@8succ

	
 	
 	
 	
 6val

	
 nullpred

	
 	
 	
 N@1

	
 	
 N@1pred

	
 	
 	
 	
 7val

	
 	
 N@2succ

	
 	
 	
 N@8

	
 	
 N@8pred

	
 	
 	
 	
 3val

	
 nullsucc

	
 	
 	
 N@2

	
 head

	
 	
 3size

tail succ

	
 	
 	
 	
 6val

	
 nullpred pred

	
 	
 	
 	
 7val

succ

pred

	
 	
 	
 	
 3val

	
 nullsucc

���3CS2110 Fall 2014 Assignment A3. Linked Lists Due on CMS by Monday, 22 September

Generics	

The definition of the doubly linked list class has DLinkedList<E> in its header. To declare a variable v of

that class, use the following to create a linked list whose values are of type Integer:	

DLinkedList<Integer> v; // (replace Integer by any type you wish)	

Similarly, create an object whose list-values will be of type String using the new-expression:	

	

 new DLinkedList<String>()	

We will introduce you to generic types more thoroughly later in the course.	

Inner classes	

Class Node is declared as a public component of class DLinkedList. It is called an inner class. Its fields and

some of its methods are private, so you cannot reference them outside class DLinkedList, e.g. in a JUnit testing
class. But the methods in DLinkedList itself can and should refer to the components of Node, even though some
are private, because Node is a component of DLinkedList. Thus, inner classes provide a useful way to allow
one class but not others to reference the components of a class. We will discuss inner classes in depth in a later
recitation.	

The constructor in class Node is private. The only way to get an object of class Node is to use one of
DLinkedList’s functions. For example, in the JUnit testing class, to obtain the first element of doubly linked list
b of Integers and store it in variable node, use:	

	

 DLinkedList<Integer>.Node node= b.getHead();	

!
What to do for this assignment!
1. Start a project a3 in Eclipse, download file DLinkedList.java from the CMS, and put that file into a3. Insert into

a3 a new JUnit test class (menu item File -> New -> JUnit Test Case) named DLinkedListTester.java. Note that
inner class Node is complete; you do not have to and should not change it. Write the 7 methods indicated in class
DLinkedList.java, testing each one thoroughly in the JUnit test class. 	

2. On the first line of the file DLinkedListTester.java, replace hh and mm by the hours and minutes you spent on this
assignment in the comment on the first line. Please do this carefully. If the minutes is 0, replace mm by 0. We
write a program to extract these times, and when you don’t actually replace hh and mm but instead write in free
form, that causes us trouble. In the second comment in the class, write your name and netid and tell us what you
thought about this assignment.	

3. Submit the assignment (both classes) on the CMS before the end of the day on the due date.	

Grading: Each of the 7 methods you write is worth 10 points. The testing of each is worth 4-5 points: we will look
carefully at class DLinkedListTester. If you don’t test a method properly, points might be deducted in two
places: the method might not be correct and it was not tested properly.	

Further guidelines and instructions!
Note that some methods that you have to write have an extra comment in the body, giving more instructions and

hints on how to write it. Follow these instructions carefully. Also, in writing methods 4..7, writing them in terms of
calls on previously written methods may save you time.	

���4CS2110 Fall 2014 Assignment A3. Linked Lists Due on CMS by Monday, 22 September

Writing a method that changes the list: Five of the methods you write change the list in some way. These methods
are short, but you have to be extremely careful to write them correctly. It is best to draw the linked list before the
change; draw it again after the change; note which variables have to be changed; and then write the code. Not doing
this is sure to cause you trouble.	

Be careful with a method like append(val) because a single picture does not tell the whole story. Here, two
cases must be considered: the list is empty and it is not empty. So two sets of before-and-after diagrams should be
drawn.	

Methodology on testing: Write and test one method at a time! Writing them all and then testing will waste your
time, for if you have not fully understood what is required, you will make the same mistakes many times. Good pro-
grammers write and test incrementally, gaining more and more confidence as each method is completed and tested.	

What to test and how to test it: Determining how to test a method that changes the list can be time consuming and
error prone. For example: after inserting 6 before 8 in list [2, 7, 8, 5], you must be sure that the list is now [2, 7, 6, 8,
5]. What fields of what objects need testing? What pred fields and what succ fields need testing? How can you be
sure you didn’t change something that shouldn’t be changed?	

To remove the need to think about this issue and to test all fields automatically, you must do the following. In class
DLinkedList.java, FIRST write functions toString and toStringReverse, as best you can. In writing
them, do not use field size. Instead, use only fields head and tail in the header class and the pred and succ
fields of nodes. Do not put in testing procedures for these two functions in the JUnit testing class, because they will
be tested automatically when testing the other methods, just as getters are tested when testing a constructor.	

For example, after completing toString and toStringReverse, you can test that they work properly on the
empty list using this method:	

 @Test	

 public void testConstructor() {	

 DLinkedList<Integer> b= new DLinkedList<Integer>();	

 assertEquals("[]", b.toString());	

 assertEquals("[]", b.toStringReverse());	

 assertEquals(0, b.size());	

 }	

Testing the next procedure, append, will fully test toString and toStringReverse. Each call on append
will be followed by 3 assertEquals calls, similar to those in testConstructor. And, testing each of the
other methods will require only calls to assertEquals like those above.	

Would you have thought of using toStringReverse like this? It is useful to spend time thinking not only
about writing the code but also about how to simplify testing.	

You should, of course, test that append returns the correct node, since append is a function. In addition to the
three assertEquals statement as shown above, use something like this::	

	

 …	

	

 DLinkedList<Integer>.Node n= b.append(6);
 … three assertEquals, as above …
 assertEquals(n, b.getTail());

