
12/02/2013

1

RECURSION
Lecture 6

CS2110 – Spring 2013

Recursion
2

 Arises in three forms in computer science
 Recursion as a mathematical tool for defining a function in

terms of its own value in a simpler case

 Recursion as a programming tool. You’ve seen this
previously but we’ll take it to mind-bending extremes (by
the end of the class it will seem easy!)

 Recursion used to prove properties about algorithms. We
use the term induction for this and will discuss it later.

Recursion as a math technique
3

 Broadly, recursion is a powerful technique for
specifying functions, sets, and programs

 A few recursively-defined functions and programs
 factorial

 combinations

 exponentiation (raising to an integer power)

 Some recursively-defined sets
 grammars

 expressions

 data structures (lists, trees, ...)

Example: Sum the digits in a number
4

 E.g. sum(87012) = 2+(1+(0+(7+8))) = 18

/** return sum of digits in n, given n >= 0 */
public static int sum(int n) {

if (n < 10) return n;

// n has at least two digits:
// return first digit + sum of rest
return n%10 + sum(n/10);

}

sum calls itself!

Example: Is a string a palindrome?
5

 isPalindrome(“racecar”) = true
 isPalindrome(“pumpkin”) = false

/** = "s is a palindrome" */
public static boolean isPalindrome(String s) {

if (s.length() <= 1)
return true;

// s has at least 2 chars
int n= s.length()-1;
return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));

}

r a c e c a r

a c e c a

c e c

e

Substring from
char(1) to char(n-1)

Count the e’s in a string
6

 countEm(‘e’, “it is easy to see that this has many e’s”) = 4

 countEm(‘e’, “Mississippi”) = 0

/** = " number of times c occurs in s */
public static int countEm(char c, String s) {

if (s.length() == 0)
return 0;

// { s has at least 1 character }
if (s.charAt(0) != c)

return countEm(c, s.substring(1));

// { first character of s is c}
return 1 + countEm (c, s.substring(1));

}

Substring from
char(1) to end

12/02/2013

2

The Factorial Function (n!)
7

 Define n! = n·(n1)·(n2)···3·2·1
read: “n factorial”

 E.g., 3! = 3·2·1 = 6

 By convention, 0! = 1

 The function int  int that gives n! on input n
is called the factorial function

The Factorial Function (n!)
8

 n! is the number of permutations of n distinct
objects
 There is just one permutation of one object. 1! = 1

 There are two permutations of two objects: 2! = 2

1 2 2 1

 There are six permutations of three objects: 3! = 6

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

 If n > 0, n! = n·(n  1)!

Permutations of
9

 Total number = 4·3! = 4·6 = 24: 4!

Permutations of
non-orange blocks

Each permutation of the three non-
orange blocks gives four permutations
when the orange block is included

Observation
10

 One way to think about the task of permuting the
four colored blocks was to start by computing all
permutations of three blocks, then finding all ways
to add a fourth block
 And this “explains” why the number of permutations

turns out to be 4!

 Can generalize to prove that the number of
permutations of n blocks is n!

A Recursive Program
11

static int fact(int n) {
if (n = = 0)

return 1;
else

return n*fact(n-1);
}

0! = 1

n! = n·(n1)!, n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24

General Approach to Writing Recursive
Functions

12

1. Try to find a parameter, say n, such that the solution
for n can be obtained by combining solutions to the
same problem using smaller values of n (e.g., (n-1) in
our factorial example)

2. Find base case(s) – small values of n for which you
can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit
one of the base cases

12/02/2013

3

A cautionary note
13

 Keep in mind that each instance of your recursive
function has its own local variables

 Also, remember that “higher” instances are waiting
while “lower” instances run

 Not such a good idea to touch global variables
from within recursive functions
 Legal… but a common source of errors
 Must have a really clear mental picture of how

recursion is performed to get this right!

The Fibonacci Function
14

 Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n  1) + fib(n  2), n ≥ 2

 Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

}

two base cases!

Fibonacci (Leonardo
Pisano) 11701240?

Statue in Pisa, Italy

Giovanni Paganucci

1863

Recursive Execution
15

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

}

fib(4)

fib(2)

fib(0) fib(1)

Execution of fib(4):

fib(3)

fib(0) fib(1)

fib(1) fib(2)

One thing to notice
16

 This way of computing the Fibonacci function is
elegant, but inefficient

 It “recomputes” answers again and again!

 To improve speed, need to save
known answers in a table!
 One entry per answer

 Such a table is called a cache

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(0) fib(1)

fib(1) fib(2)

Memoization (fancy term for “caching”)
17

 Memoization is an optimization technique used to
speed up computer programs by having function
calls avoid repeating the calculation of results for
previously processed inputs.
 The first time the function is called, we save result

 The next time, we can look the result up
 Assumes a “side effect free” function: The function just

computes the result, it doesn’t change things

 If the function depends on anything that changes, must
“empty” the saved results list

Adding Memoization to our solution

 Before:  After

18

static int fib(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-2) + fib(n-1);
}

static ArrayList<Integer> cached =
new ArrayList<Integer>();

static int fib(int n) {
if(n < cached.size())

return cached.get(n);
int v;
if (n == 0)

v = 0;
else if (n == 1)

v = 1;
else

v = fib(n-2) + fib(n-1);
// cached[n] = fib(n). This code makes use of the fact
// that an ArrayList adds elements to the end of the list
if(n == cached.size())

cached.add(v);
return v;

}

12/02/2013

4

Notice the development process
19

 We started with the idea of recursion

 Created a very simple recursive procedure

 Noticed it will be slow, because it wastefully
recomputes the same thing again and again

 So made it a bit more complex but gained a lot of
speed in doing so

 This is a common software engineering pattern

Why did it work?
20

 This cached list “works” because for each value of
n, either cached.get(n) is still undefined, or has fib(n)

 Takes advantage of the fact that an ArrayList adds
elements at the end, and indexes from 0

0 1 1 2 3

cached@BA8900, size=5

cached.get(0)=0
cached.get(1)=1 … cached.get(n)=fib(n)

Property of our code: cached.get(n) accessed after fib(n) computed

Positive Integer Powers
21

 an = a·a·a···a (n times)

 Alternate description:
 a0 = 1

 an+1 = a·an

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version
22

 Power computation:
 a0 = 1

 If n is nonzero and even, an = (an/2)2

 If n is odd, an = a·(an/2)2
 Java note: If x and y are integers, “x/y” returns the integer part

of the quotient

 Example:
 a5 = a·(a5/2)2 = a·(a2)2 = a·((a2/2)2)2 = a·(a2)2

Note: this requires 3 multiplications rather than 5!

A Smarter Version
23

 … Example:
 a5 = a·(a5/2)2 = a·(a2)2 = a·((a2/2)2)2 = a·(a2)2

Note: this requires 3 multiplications rather than 5!

 What if n were larger?
 Savings would be more significant

 This is much faster than the straightforward computation
 Straightforward computation: n multiplications

 Smarter computation: log(n) multiplications

Smarter Version in Java
24

 n = 0: a0 = 1
 n nonzero and even: an = (an/2)2

 n nonzero and odd: an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

parameterslocal variable

The method has two parameters and a local variable

Why aren’t these overwritten on recursive calls?

12/02/2013

5

How Java “compiles” recursive code
25

 Key idea:
 Java uses a stack to remember parameters and local

variables across recursive calls
 Each method invocation gets its own stack frame

 A stack frame contains storage for
 Local variables of method
 Parameters of method
 Return info (return address and return value)
 Perhaps other bookkeeping info

Stacks
26

 Like a stack of dinner plates

 You can push data on top or
pop data off the top in a LIFO
(last-in-first-out) fashion

 A queue is similar, except it is
FIFO (first-in-first-out)

top element

2nd element

3rd element

...

bottom
element

...

top-of-stack

pointer

stack grows

return info

local variables

parameters

Stack Frame
27

 A new stack frame is pushed
with each recursive call

 The stack frame is popped
when the method returns

 Leaving a return value (if
there is one) on top of the
stack

a stack frame

retval

halfPower

a, n

Example: power(2, 5)
28

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 1

(hP =) ?

return info

(a =) 2
(n =) 5
(hP =) 4

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) 2

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) ?

return info

(a =) 2
(n =) 1
(hP =) 1

(retval =) 1

(retval =) 2

(retval =) 4

(retval =) 32

hP: short for halfPower

How Do We Keep Track?
29

 Many frames may exist, but computation is only
occurring in the top frame
 The ones below it are waiting for results

 The hardware has nice support for this way of
implementing function calls, and recursion is just a
kind of function call

Conclusion
30

 Recursion is a convenient and powerful way to define
functions

 Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:
 Reduce a big problem to smaller problems of the same kind, solve

the smaller problems

 Recombine the solutions to smaller problems to form solution for big
problem

 Important application (next lecture): parsing

12/02/2013

6

Extra slides
31

 For use if we have time for one more example of
recursion

 This builds on the ideas in the Fibonacci example

Combinations
(a.k.a. Binomial Coefficients)

32

 How many ways can you choose r items from
a set of n distinct elements? () “n choose r”

() = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A:
{A,B}, {A,C}, {A,D}, {A,E}

2-element subsets not containing A: {B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

 Therefore, = +

 … in perfect form to write a recursive function!

()4
1

()4
2

()4
1 ()4

2()5
2

n
r

5
2

Combinations
33

= + , n > r > 0

= 1
= 1

()
n
r ()

n1
r ()

n1
r1

()
n
n

()
n
0

()0
0

()1
1()1

0

()2
2()2

1()2
0

()3
3()3

2()3
1()3

0

()4
4()4

3()4
2()4

1()4
0

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

=

Pascal’s

triangle

Can also show that =()
n
r

n!

r!(nr)!

Binomial Coefficients
34

34

(x + y)n = xn + xn1y + xn2y2 + ··· + yn

=  xniyi()n
i

()n
n()n

0 ()n
1 ()n

2

n

i = 0

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion

of the binomial power (x+y)n :

Combinations Have Two Base Cases
35

 Coming up with right base cases can be tricky!

 General idea:
 Determine argument values for which recursive case

does not apply

 Introduce a base case for each one of these

Two base cases

= + , n > r > 0

= 1
= 1

()
n
r ()

n1
r ()

n1
r1

()
n
n

()
n
0

Recursive Program for Combinations
36

static int combs(int n, int r) { //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= + , n > r > 0

= 1
= 1

()
n
r ()

n1
r ()

n1
r1

()
n
n

()
n
0

12/02/2013

7

Exercise for the reader (you!)
37

 Modify our recursive program so that it caches
results

 Same idea as for our caching version of the
fibonacci series

 Question to ponder: When is it worthwhile to
adding caching to a recursive function?
 Certainly not always…
 Must think about tradeoffs: space to maintain the cached

results vs speedup obtained by having them

Something to think about
38

 With fib(), it was kind of a trick to arrange that:
cached[n]=fib(n)

 Caching combinatorial values will force you to store
more than just the answer:
 Create a class called Triple
 Design it to have integer fields n, r, v
 Store Triple objects into ArrayList<Triple> cached;
 Search cached for a saved value matching n and r
 Hint: use a foreach loop

