Recursion

0 Arises in three forms in computer science

Recursion as a mathematical tool for defining a function in
terms of its own value in a simpler case

Recursion as a programming tool. You've seen this
previously but we’ll take it to mind-bending extremes (by
the end of the class it will seem easy!)

Recursion used to prove properties about algorithms. We
use the term induction for this and will discuss it later.

Recursion as a math technique

01 Broadly, recursion is a powerful technique for
specifying functions, sets, and programs
0 A few recursively-defined functions and programs
factorial
combinations
exponentiation (raising to an integer power)
Some recursively-defined sets
grammars
expressions

data structures (lists, trees, ...)

12/02/2013

Example: Sum the digits in a number
]

[** return sum of digits in n, given n >= 0 */

public static int sum(int n) {
sum calls itself!

if (n < 10) return n

/I'n has at least two digits/
I return first digit +
return n%10 + sum(n/10);

0 E.g. sum(87012) = 2+(1+(0+(7+8))) = 18

Example: Is a string a palindrome?
=]

/**="sis a palindrome" */
public static boolean isPalindrome(String s) {
if (s.length() <= 1)
char(1) to char(n-1)
/I s has at least 2 chars
int n=s.length()-1;

return true;
return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));

o isPalindrome(“racecar”) = true
0 isPalindrome(“pumpkin”) = false

Count the e’s in a string
fm

[** =" number of times ¢ occurs in's */
public static int countEm(char c, String s) {
if (s.length() == 0)
return 0;
11 { s has at least 1 character } char(1) to end
if (s.charAt(0) I=c)
return countEm(c, s.substring(1));

I { first character of s is ¢}
return 1 + countEm (c, s.substring(1));

o1 countEm(‘e’, “it is easy to see that this has many e’s”) = 4

o1 countEm(‘e’, “Mississippi”) = 0

The Factorial Function (n!)
o Define n! = n+(n—1)+(n—2)-+3-2-1
read: “n factorial”
Eg,31=321=6

o By convention, Ol = 1

01 The function int — int that gives nl on input n
is called the factorial function

The Factorial Function (n!)

0 nlis the number of permutations of n distinct
objects
There is just one permutation of one object. 11 =1
There are two permutations of two objects: 2! = 2
12 21
There are six permutations of three objects: 3! =6

123 132 213 231 312 321
olfn>0, nn=n(n—1)!

Permutations of & 8§

Permutations of
non-orange blocks

s TS0
w w = - W
P =1 I=1

U888 \geeo
- - @ Each permutation of the three non-

orange blocks gives four permutations

when the orange block is included
o Total number = 4.31 = 4.6 = 24: 4!

12/02/2013

Observation

o One way to think about the task of permuting the
four colored blocks was to start by computing all
permutations of three blocks, then finding all ways
to add a fourth block

And this “explains” why the number of permutations
turns out to be 4!

Can generalize to prove that the number of
permutations of n blocks is n!

A Recursive Program
or=1 Execution of fact(4)
n!'=n-(n-1)!, n>0 fact(4) 24
6
fact(3)
static int fact(int n) {
if (n==0) fact(2)
return 1; i
else fact(1)
return n*fact(n-1); 1
3 fact(0)
General Approach to Writing Recursive
Functions
==

1. Try to find a parameter, say n, such that the solution
for n can be obtained by combining solutions to the
same problem using smaller values of n (e.g., (n-1) in
our factorial example)

2. Find base case(s) — small values of n for which you
can just write down the solution (e.g., O! = 1)

3. Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit
one of the base cases

A cautionary note

Lis]

0 Keep in mind that each instance of your recursive
function has its own local variables

0 Also, remember that “higher” instances are waiting
while “lower” instances run

o Not such a good idea to touch global variables
from within recursive functions
Legal... but a common source of errors

Must have a really clear mental picture of how
recursion is performed to get this right!

The Fibonacci Function

I Mathematical definition:
fib(0) = 0 two base cases!
fib(1) =1 :>
fib(n) = fib(n — 1) + fib(n—2), n22

%

Fibonacci (Leonardo
Pisano) 1170-1240?

N
s\
'

1 Fibonacci sequence: 0,1,1,2,3,5,8,13, ...

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

Statue in Pisa, Italy
Giovanni Paganucci
1863

3

Recursive Execution

[== static int fib(int n) {

if (n == 0) return O;

else if (n == 1) return 1;

else return fib(n-2) + fib(n-1);

}

Execution of fib(4): fib(4)

fib(2) fib(3)

i

fib() fib(1) fibl) fib(2)

N

fib(0) fib(1)

12/02/2013

One thing to notice

o This way of computing the Fibonacci function is
elegant, but inefficient

o It “recomputes” answers again and again!

o To improve speed, need to save
known answers in a table! fib(4)

One entry per answer fib@) fib(3)
Such a table is called a cache

fib(0) fib(1)fib(1) fib(2)
fib(0) fib(1

Memoization (fancy term for “caching”)

0 Memoization is an optimization technique used to
speed up computer programs by having function
calls avoid repeating the calculation of results for
previously processed inputs.

The first time the function is called, we save result

The next time, we can look the result up

= Assumes a “side effect free” function: The function just
computes the result, it doesn’t change things

u If the function depends on anything that changes, must
“empty” the saved results list

Adding Memoization to our solution

o Before: o After
lstatic ArrayList<Integer> cached =
static new ArraylList<integer>();

T (static int fibCint n) {
i if(n < cached.size())
return cached.get(n);
int v;
else| §f (n'=0)
' v = 0;

else

> else if (n == 1)
v =13

else

v = fib(n-2) + fib(n-1);
// cached[n] = fib(n). This code makes use of the fact
// that an ArraylList adds elements to the end of the list
if(n == cached.size())

cached.add(v);
return v;

Notice the development process

We started with the idea of recursion
Created a very simple recursive procedure

Noticed it will be slow, because it wastefully
recomputes the same thing again and again

So made it a bit more complex but gained a lot of
speed in doing so

This is a common software engineering pattern

12/02/2013

A Smarter Version

Power computation:
a0 =1
If n is nonzero and even, an = (an/2)2
If nis odd, an = a+(an/2)2

Java note: If x and y are integers, “x/y” returns the integer part
of the quotient

Example:
a5 = a(a5/2)2 = a(a2)2 = a((a2/2)2)2 = a(a2)2

Note: this requires 3 multiplications rather than 5!

Why did it work?

This cached list “works” because for each value of
n, either cached.get(n) is still undefined, or has fib(n)

Takes advantage of the fact that an Arraylist adds
elements at the end, and indexes from O
cached@BAB8900, size=5

™~
cached.get(0)=0 '
cached.get(1)=1 --- cached.get(n)=fib(n)

Property of our code: cached.get(n) accessed after fib(n) computed

A Smarter Version

... Example:
a5 = a(a5/2)2 = a(a2)2 = a((a2/2)2)2 = a(a2)2

Note: this requires 3 multiplications rather than 5!

What if n were larger?
Savings would be more significant

This is much faster than the straightforward computation
Straightforward computation: n multiplications

Smarter computation: log(n) multiplications

Positive Integer Powers

a" = ara+a+a (n times)

Alternate description:

a® =

atl = g-a"

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

H

Smarter Version in Java

n=0: a®=1
n nonzero and even: a" = (a"/2)?

n nonzero and odd: a" = a:(a"/2)?
local variable parameters

e I'4
static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

s

*The method has two parameters and a local variable
*Why aren'’t these overwritten on recursive calls?

How Java “compiles” recursive code

o Key idea:

Java uses a stack to remember parameters and local
variables across recursive calls

Each method invocation gets its own stack frame

0 A stack frame contains storage for
Local variables of method
Parameters of method
Return info (return address and return value)
Perhaps other bookkeeping info

Stacks
t

stack grows

top-of-stack
top element
pointer
2nd element
3rd element 0 Like a stack of dinner plates
1 You can push data on top or
pop data off the top in a LIFO
(last-in-first-out) fashion
bottom o A queuve is similar, except it is
element FIFO (first-in-first-out)

Stack Frame

o A new stack frame is pushed

with each recursive call
halfPower
local variables

a stack frame
0 The stack frame is popped

a, n
arameters

when the method returns P
. N retval
Leaving a return value (if return info

there is one) on top of the
stack

12/02/2013

Example: power(2, 5)
| E2n]
retval =) 1|
(hP=)? (hP=)1
(n=)1 (n=)1
hP: short for hal fPower (a=)2 @=)2
return info return info retval =) 2
wP=)? (DR (hP=)2 hP=)2
n=)2 (n=)2 (n=)2 n=)2
@=)2 @=)2 @=)2 @=)2
return info return info return info return info (reval =) 4
(hP=)? (hP=)? (hP=)? (hP=)? (hp=)? (hP=)4
(n=)5 (n=)5 (n=)5 (n=)5 (n=)5 (n=)5
@=)2 @=)2 (a=)2 (a=)2 (a=)2 (a=)2
return info| | return info return info return info return info| | return info
N N7 N2
(retval =) 32

How Do We Keep Track?

0 Many frames may exist, but computation is only
occurring in the top frame

The ones below it are waiting for results

0 The hardware has nice support for this way of
implementing function calls, and recursion is just a
kind of function call

Conclusion

Recursion is a convenient and powerful way to define
functions

Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:
Reduce a big problem to smaller problems of the same kind, solve
the smaller problems
Recombine the solutions to smaller problems to form solution for big
problem

o Important application (next lecture): parsing

Extra slides

0 For use if we have time for one more example of
recursion

0 This builds on the ideas in the Fibonacci example

Combinations
(a.k.a. Binomial Coefficients)

o How many ways can you choose r items from
Ty n
a set of n distinct elements? () “n choose r”

(g) = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A: (‘1‘)
{AB}, {AC}, {AD}, {AE}
2-element subsets not containing As {B,C},{8,0},{B,E},{C,D}{C.E}{D.E}
4
5 4 4 (2)
Therefore, (2)— (1)+ (2)
... in perfect form to write a recursive function!

Combinations

= (nr1)+ (rr]:i), n>r>0
1 n!

(n) ey
Ci | how that =
an also show tha r TR

Pascal’'s 1
triangle 101

12/02/2013

Binomial Coefficients

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion
of the binomial power (x+y)" :

oy = (©xn+ (Dxty + (3)x02y2 + o+ (1) yn

= 3 () ey

Combinations Have Two Base Cases
" (F1), n>rso
&

Two base cases

o Coming up with right base cases can be tricky!
o General idea:

Determine argument values for which recursive case
does not apply

Introduce a base case for each one of these

Recursive Program for Combinations

n;1)+ (rr]:ll), n>r>0

static int combs(int n, int r) {
if (r == 0 |] r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

//assume n>=r>=0

Exercise for the reader (you!)

Modify our recursive program so that it caches
results

Same idea as for our caching version of the
fibonacci series

Question to ponder: When is it worthwhile to
adding caching to a recursive function?
Certainly not always...

Must think about tradeoffs: space to maintain the cached
results vs speedup obtained by having them

Something to think about

With fib(), it was kind of a trick to arrange that:
cached[n]=fib(n)

Caching combinatorial values will force you to store
more than just the answer:
Create a class called Triple
Design it to have integer fieldsn, r, v
Store Triple objects into ArrayList<Triple> cached;
Search cached for a saved value matching n and r
Hint: use a foreach loop

12/02/2013

