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RECURSION
Lecture 6

CS2110 – Spring 2013

Recursion
2

 Arises in three forms in computer science
 Recursion as a mathematical tool for defining a function in 

terms of its own value in a simpler case

 Recursion as a programming tool.  You’ve seen this 
previously but we’ll take it to mind-bending extremes (by 
the end of the class it will seem easy!)

 Recursion used to prove properties about algorithms.  We 
use the term induction for this and will discuss it later.

Recursion as a math technique
3

 Broadly, recursion is a powerful technique for 
specifying functions, sets, and programs

 A few recursively-defined functions and programs
 factorial 

 combinations

 exponentiation (raising to an integer power)

 Some recursively-defined sets
 grammars 

 expressions

 data structures (lists, trees, ...)

Example: Sum the digits in a number
4

 E.g. sum(87012) = 2+(1+(0+(7+8))) = 18

/** return sum of digits in n, given n >= 0 */ 
public static int sum(int n) {

if (n < 10) return n;

// n has at least two digits:
// return first digit + sum of rest
return n%10 + sum(n/10);

}

sum calls itself!

Example: Is a string a palindrome?
5

 isPalindrome(“racecar”) = true
 isPalindrome(“pumpkin”) = false

/** = "s is a palindrome" */
public static boolean isPalindrome(String s) {

if (s.length() <= 1)
return true;

// s has at least 2 chars
int n= s.length()-1;
return s.charAt(0) == s.charAt(n) && isPalindrome(s.substring(1, n));

}
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Substring from 
char(1) to char(n-1)

Count the e’s in a string
6

 countEm(‘e’, “it is easy to see that this has many e’s”) = 4

 countEm(‘e’, “Mississippi”) = 0

/** = " number of times c occurs in s */
public static int countEm(char c, String s) {

if (s.length() == 0)
return 0;

// { s has at least 1 character }
if (s.charAt(0) != c)

return countEm(c, s.substring(1));

// { first character of s is c}
return 1 + countEm (c, s.substring(1));

}

Substring from 
char(1) to end
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The Factorial Function  (n!)
7

 Define n! = n·(n1)·(n2)···3·2·1     
read: “n factorial”

 E.g., 3! = 3·2·1 = 6

 By convention, 0! = 1

 The function int  int that gives n! on input n 
is called the factorial function

The Factorial Function  (n!)
8

 n! is the number of permutations of n distinct 
objects
 There is just one permutation of one object.  1! = 1

 There are two permutations of two objects:  2! = 2

1 2    2 1

 There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

 If n > 0,  n! = n·(n  1)!

Permutations of
9

 Total number = 4·3! = 4·6 = 24:  4!

Permutations of 
non-orange blocks

Each permutation of the three non-
orange blocks gives four permutations 
when the orange block is included

Observation
10

 One way to think about the task of permuting the 
four colored blocks was to start by computing all 
permutations of three blocks, then finding all ways 
to add a fourth block
 And this “explains” why the number of permutations 

turns out to be 4! 

 Can generalize to prove that the number of 
permutations of n blocks is n!

A Recursive Program
11

static int fact(int n) {
if (n = = 0)

return 1;
else

return n*fact(n-1);
}

0! = 1

n! = n·(n1)!,  n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24

General Approach to Writing Recursive 
Functions

12

1. Try to find a parameter, say n, such that the solution 
for n can be obtained by combining solutions to the 
same problem using smaller values of n (e.g., (n-1) in 
our factorial example)

2. Find base case(s) – small values of n for which you 
can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases    
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A cautionary note
13

 Keep in mind that each instance of your recursive 
function has its own local variables

 Also, remember that “higher” instances are waiting 
while “lower” instances run

 Not such a good idea to touch global variables 
from within recursive functions
 Legal… but a common source of errors
 Must have a really clear mental picture of how 

recursion is performed to get this right!

The Fibonacci Function
14

 Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n  1) + fib(n  2),  n ≥ 2

 Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

} 

two base cases!

Fibonacci (Leonardo 
Pisano) 11701240?

Statue in Pisa, Italy

Giovanni Paganucci

1863

Recursive Execution
15

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-2) + fib(n-1);

} 

fib(4)

fib(2)

fib(0) fib(1)

Execution of fib(4):

fib(3)

fib(0) fib(1)

fib(1) fib(2)

One thing to notice
16

 This way of computing the Fibonacci function is 
elegant, but inefficient

 It “recomputes” answers again and again!

 To improve speed, need to save 
known answers in a table!
 One entry per answer

 Such a table is called a cache

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(0) fib(1)

fib(1) fib(2)

Memoization (fancy term for “caching”)
17

 Memoization is an optimization technique used to 
speed up computer programs by having function 
calls avoid repeating the calculation of results for 
previously processed inputs.
 The first time the function is called, we save result

 The next time, we can look the result up
 Assumes a “side effect free” function: The function just 

computes the result, it doesn’t change things

 If the function depends on anything that changes, must 
“empty” the saved results list

Adding Memoization to our solution

 Before:  After

18

static int fib(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fib(n-2) + fib(n-1);
} 

static ArrayList<Integer> cached = 
new ArrayList<Integer>();

static int fib(int n) {
if(n < cached.size())

return cached.get(n);
int v;
if (n == 0)

v = 0;
else if (n == 1)

v = 1;
else

v = fib(n-2) + fib(n-1);
// cached[n] = fib(n).  This code makes use of the fact
// that an ArrayList adds elements to the end of the list
if(n == cached.size())

cached.add(v);
return v;

} 
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Notice the development process
19

 We started with the idea of recursion

 Created a very simple recursive procedure

 Noticed it will be slow, because it wastefully 
recomputes the same thing again and again

 So made it a bit more complex but gained a lot of 
speed in doing so

 This is a common software engineering pattern

Why did it work?
20

 This cached list “works” because for each value of 
n, either cached.get(n) is still undefined, or has fib(n)

 Takes advantage of the fact that an ArrayList adds 
elements at the end, and indexes from 0

0 1 1 2 3

cached@BA8900, size=5

cached.get(0)=0
cached.get(1)=1 … cached.get(n)=fib(n)

Property of our code: cached.get(n) accessed after fib(n) computed

Positive Integer Powers
21

 an = a·a·a···a (n times)

 Alternate description:
 a0 = 1

 an+1 = a·an

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version
22

 Power computation:
 a0 = 1

 If n is nonzero and even, an = (an/2)2

 If n is odd, an = a·(an/2)2
 Java note: If x and y are integers, “x/y” returns the integer part 

of the quotient

 Example: 
 a5  =  a·(a5/2)2  =  a·(a2)2  =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

A Smarter Version
23

 … Example: 
 a5  =  a·(a5/2)2  =  a·(a2)2  =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

 What if n were larger? 
 Savings would be more significant

 This is much faster than the straightforward computation
 Straightforward computation:  n multiplications

 Smarter computation:  log(n)  multiplications

Smarter Version in Java
24

 n = 0:  a0 = 1
 n nonzero and even:  an = (an/2)2

 n nonzero and odd:  an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

parameterslocal variable

The method has two parameters and a local variable

Why aren’t these overwritten on recursive calls?



12/02/2013

5

How Java “compiles” recursive code
25

 Key idea: 
 Java uses a stack to remember parameters and local 

variables across recursive calls
 Each method invocation gets its own stack frame

 A stack frame contains storage for
 Local variables of method
 Parameters of method
 Return info (return address and return value)
 Perhaps other bookkeeping info

Stacks
26

 Like a stack of dinner plates

 You can push data on top or 
pop data off the top in a LIFO 
(last-in-first-out) fashion

 A queue is similar, except it is 
FIFO (first-in-first-out)

top element

2nd element

3rd element

...

bottom 
element

...

top-of-stack

pointer

stack grows

return info

local variables

parameters

Stack Frame
27

 A new stack frame is pushed 
with each recursive call

 The stack frame is popped 
when the method returns

 Leaving a return value (if 
there is one) on top of the 
stack

a stack frame

retval

halfPower

a, n

Example: power(2, 5)
28

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

return info

(a = ) 2
(n = ) 5
(hP = ) 4

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP = ) 1

(retval = ) 1

(retval = ) 2

(retval = ) 4

(retval = ) 32

hP: short for halfPower

How Do We Keep Track?
29

 Many frames may exist, but computation is only 
occurring in the top frame
 The ones below it are waiting for results

 The hardware has nice support for this way of 
implementing function calls, and recursion is just a 
kind of function call

Conclusion
30

 Recursion is a convenient and powerful way to define 
functions

 Problems that seem insurmountable can often be solved in a 
“divide-and-conquer” fashion:
 Reduce a big problem to smaller problems of the same kind, solve 

the smaller problems

 Recombine the solutions to smaller problems to form solution for big 
problem

 Important application (next lecture): parsing
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Extra slides
31

 For use if we have time for one more example of 
recursion

 This builds on the ideas in the Fibonacci example

Combinations 
(a.k.a. Binomial Coefficients)

32

 How many ways can you choose r items from 
a set of n distinct elements?   (  )  “n choose r”

(  ) = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

2-element subsets not containing A: {B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

 Therefore,        =        +

 … in perfect form to write a recursive function!

(  )4
1

(  )4
2

(  )4
1 (  )4

2(  )5
2

n
r

5
2

Combinations
33

= +         ,  n > r > 0

= 1
= 1

(  )
n
r (    )

n1
r (    )

n1
r1

(  )
n
n

(  )
n
0

(  )0
0

(  )1
1(  )1

0

(  )2
2(  )2

1(  )2
0

(  )3
3(  )3

2(  )3
1(  )3

0

(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0

1

1      1

1      2      1

1      3      3      1

1      4      6      4      1

=

Pascal’s

triangle

Can also show that               =(  )
n
r

n!

r!(nr)!

Binomial Coefficients
34

34

(x + y)n =        xn +       xn1y +       xn2y2 + ··· +        yn

=   xniyi(  )n
i

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

i = 0

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion

of the binomial power (x+y)n :

Combinations Have Two Base Cases
35

 Coming up with right base cases can be tricky!

 General idea:
 Determine argument values for which recursive case 

does not apply

 Introduce a base case for each one of these

Two base cases

= +         ,  n > r > 0

= 1
= 1

(  )
n
r (    )

n1
r (    )

n1
r1

(  )
n
n

(  )
n
0

Recursive Program for Combinations
36

static int combs(int n, int r) {   //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= +         ,  n > r > 0

= 1
= 1

(  )
n
r (    )

n1
r (    )

n1
r1

(  )
n
n

(  )
n
0
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Exercise for the reader (you!)
37

 Modify our recursive program so that it caches 
results

 Same idea as for our caching version of the 
fibonacci series

 Question to ponder: When is it worthwhile to 
adding caching to a recursive function?
 Certainly not always…
 Must think about tradeoffs: space to maintain the cached 

results vs speedup obtained by having them

Something to think about
38

 With fib(), it was kind of a trick to arrange that:
cached[n]=fib(n)

 Caching combinatorial values will force you to store 
more than just the answer:
 Create a class called Triple
 Design it to have integer fields n, r, v
 Store Triple objects into ArrayList<Triple> cached;
 Search cached for a saved value matching n and r
 Hint: use a foreach loop


