
1	

Overview: abstract classes and
interfaces	

1	

Make a class abstract so instances of it
cannot be created.	

Make a method abstract so it must be
overridden.	

An interface is like an abstract class whose
methods are all abstract and whose fields are
all public constants. This allows multiple
inheritance without ambiguity. An interface
has a different syntax and a different way of
using it.	

	

References to text and to JavaSummary.pptx	

Abstract class: C.27, slides 42-44	

Abstract method: C.27, slide 44	

Interface declaration: D.11-D.13, D.28,
slide 60	

Implementing interfaces: D.14-D.15, slide
60	

Casting with interfaces: none, slide 61	

Interface Comparable: D.20, slide 62	

abstract classes and interfaces	

2	

Circle@x	

Circl
e	

Shap
e	

Objec
t	

Rect@z	

fields for���
(x, y) coords	

Rec
t	

 Shape	

 Object	

Teach using the
problem of using
objects to represent
shapes in the plane	

fields for���
length,
width	

fields for���
(x, y) coords	

field for���
radius	

Every shape has a
position (x, y) in the
plane, so use a
superclass Shape to
hold the point.	

Subclass has
necessary fields to
describe shape.	

Circle@y	

Circl
e	

Shap
e	

Objec
t	

fields for���
(x, y) coords	

field for���
radius	

Every subclass has a different area()
function	

3	

We are dealing with shapes that
have areas:	

Circles, Rectangles, Triangles,
Polyhedrons, Squares, etc. 	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Therefore, each subclass
has a (different) function
area(), which returns its
area.	

Making our points with scaled-down
classes	

4	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	

Object	

public class Shape { }	

	

public class Circle extends Shape {	

 public double area() {	

 return 1;	

 }	

 }	

	

public class Rect extends Shape {	

 public double area() {	

 return 1;	

 } 	

}	

Motivating abstract
classes	

5	

Shape[]	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

b	

Shape@y	

…	

Shape	

…	

Object	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	

Object	

0 1 2 3 	

Rect@z	

…	

area()	

…	

Rect	

Shape	

…	

Object	

b[1].area() is illegal, even though each	

Subclass object has function area()	

Don’t want to cast
down! Instead,
define area() in
Shape	

Cast?	

if (b[1] instanceof Rect)	

 r= ((Rect)b[1]).area();	

Motivating abstract
classes	

6	

Shape[]	

area() in class Shape doesn’t return
useful value	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

area()	

area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

public double area()
{ return 0.0; }	

Problem: How to force
subclasses to override
area?	

Problem:
How to ban
creation of	

Shape
objects	

area()	

2	

Abstract class and method solves both
problems	

7	

public abstract class Shape {	

	

 public abstract double
area();	

 …	

}	

Abstract class. Means can’t create object of Shape:	

 new Shape(…) syntactically illegal	

Abstract method. Means it
must be overridden in any
subclass	

Place abstract
method only in
abstract class.	

	

 Body is
replaced by ;	

8	

Can extend only one class	

public class C extends C1, C2 { 	

 public void p() {	

 …; h= m(); …	

 }	

}	

public class
C1 {	

 public int
m() {	

 return 2;	

 }	

 …	

}	

public class
C2 {	

 public int
m() {	

 return 3;	

 }	

 …	

}	

if we allowed
multiple
inheritance, which
m used?	

About interfaces	

9	

Can extend only one class	

public class C extends C1, C2
{ … }	

public abstract class
C1 {
 public abstract int
m();
 public int p() {…}
}

public abstract
class C2 {
 public abstract
int m();
 public int q(){…}
}

Use abstract classes? Seems OK, because
method bodies not given!	

But Java does not allow this, because abstract
classes can have non-abstract methods	

Instead, Java has a construct, the interface,
which is like an abstract class but has more
restrictions.	

10	

Interfaces	

An interface is a fully abstract class, with a
slightly different syntax.	

	

An interface can contain type signatures for
methods, just like abstract methods in
abstract classes, but they have to be public.	

	

An interface can contain fields, but they have
to be public, static, and final and they have to
contain an initializer. So they are really just
constants	

11	

Interface declaration and use of
an interface	

public class C implements C1,
C2 {	

…	

}	

 public interface
C1 {
 int m();
 int p();
 int FF= 32;
}

public interface
C2 {
 int m();
 int q();
}

Methods declared in	

 interface are
automatically public,	

 abstract	

Use of public, abstract is
optional	

Use ; not { … }	

Field declared in	

 interface
automatically	

 public, static,
final	

Must have
initialization	

Use of public,
static, final
optional	

Eclipse: Create new interface?
Create new class, change keyword
class to interface	

C must override
all methods in
C1 and C2	

Casting with interfaces	

12	

class B extends A implements C1, C2 { … }	

interface C1 { … }	

interface C2 { … }	

class A { … }	

 b= new B();	

What does object b look like?	

A	

Object	

B	

Draw b like this, showing���
only names of partitions:	

Add C1, C2 as new dimensions:	

C2	

C1	

Object b has 5
perspectives. Can cast b
to any one of them at
any time. Examples:	

(C2) b
(Object) b	

(A)(C2) b (C1)
(C2) b	

 	

You’ll see such casting
later	

3	

Same rules apply to classes and
interface	

13	

class B extends A implements C1, C2 { … }	

interface C1 { … }	

interface C2 { … }	

class A { … }	

B b= new B();	

C2 c= b;	

A	

Object	

B	

C2	

C1	

c	

B@xy	

C2	

b	

B@xy	

B	

c.m(…) syntactically legal only if m declared in C2	

c.m(…) calls overriding m declared in B	

14	

Shape[]	

Want to sort b by shape areas.���
Don’t want to write a sort
procedure —many already exist.
Avoid duplication of effort!	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

area()	

area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

area()	

b could be sorted on many things:	

area	

distance from (0,0)	

x-coordinate	

…	

Sort array of
Shapes	

15	

Shape[]	

Want to sort b by shape areas.���
Don’t want to write a sort
procedure —many already exist.
Avoid duplication of effort!	

Circle@x	

…	

area()	

…	

Circle	

Shape	

…	

Object	

b	

Rect@y	

…	

area()	

…	

Rect	

Shape	

…	

Object	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

area()	

area()	

area()	

0 1 2 3 4 … 	

…	

Trian@z	

…	

area()	

…	

Trian	

Shape	

…	

Object	

area()	

Sort array of
Shapes	

Solution: Write a
function compareTo
that tells whether one
shape has bigger area
than another.	

Tell sort procedure to
use it.	

16	

Look at: interface
java.lang.Comparable

 /** Comparable requires method
compareTo */
public interface Comparable {

 /** = a negative integer if this
object < c,
 = 0 if this object = c,
 = a positive integer if this
object > c.
 Throw a ClassCastException
if c cannot
 be cast to the class of this
object. */
 int compareTo(Object c);

}

Classes
that
implement
Comparabl
e	

Boolean	

Byte	

Double	

Integer	

…	

String	

BigDecimal	

BigInteger	

Calendar	

Time	

Timestamp	

…	

	

	

	

In class java.util.Arrays:	

public static void sort (Comparable[] a) {…} 	

17	

17	

Which class should implement
Comparable?

Shape	

Object	

Circle	

Comparable	

First idea: all the
subclasses Circle,
Rect, …	

Doesn’t work! Each
element	

of b has static type
Shape, and
compareTo isn’t
available in Shape
partition 	

Shape[] b= …	

…	

Shape	

Object	

Circle	

Comparable	

Use this. Shape
must implement
Comparable	

Shape[]	

b	

 …	

18	

18	

Shape should implement
Comparable

Shape[] b=
…	

…	

Arrays.sort(
b);	

	

	

Shape	

Object	

Circle Rect … Triangle 	

Comparable	

Shape[]@20	

…	

In class java.util.Arrays:	

public static void sort (Comparable[] a) {…} 	

b	

Shape[]@20	

a	

 ??	

Comparable[]	

Shape[]	

Shape[]@20	

Cast from Shape[] to Comparable[] happens automatically	

4	

19	

public abstract class Shape implements Comparable {	

/** If c is not a Shape, throw a CastClass exception.	

 Otherwise, return neg number, 0, or pos number���
 depending on whether this shape has smaller area than c,	

 same area, or greater area */	

 public @Override int compareTo(Object c) {	

	

 return area() – ((Shape) c).area();	

}	

 …	

Cast needed so
that area() can be
used. If c not a
Shape, exception
thrown	

Class Shape implements
Comparable	

We take advantage of the fact that we
don’t have to return -1, 0, or 1! Simpler
code	

 20	

Beauty of interfaces:

Arrays.sort sorts an array or list C[] for any
class C, as long as C implements interface
Comparable —and thus implements
compareTo to say which of two elements is
bigger.

Java Library static methods:	

	

Arrays.sort(Comparable[] a)	

Collections.sort(List<Comparable> list)	

	

Class arrays has many other useful static methods

