RACE CONDITIONS AND
SYNCHRONIZATION

Lecture 21 — CS2110 — Fall 2013

Reminder

A “race condition” arises if two threads try and
share some data

One updates it and the other reads it, or both
update the data

In such cases it is possible that we could see the data
“in the middle” of being updated

A “race condition”: correctness depends on the update
racing to completion without the reader managing to
glimpse the in-progress update

Synchronization (aka mutual exclusion) solves this

Java Synchronization (Locking)

private Stack<String> stack = new Stack<String>();

public void doSomething () ({
ynchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.pop() ;

}

//do something with s..ﬁ/’_jr\\\\\\\

l\synchronized blo

* Put critical operations in a synchronized block
* The stack object acts as a lock

* Only one thread can own the lock at a time

Java Synchronization (Locking)

T =
* You can lock on any object, including this

public synchronized void doSomething () {

}

IS equivalent to

public void doSomething () ({
synchronized (this) {

}

}

How locking works

Only one thread can “hold” a lock at a time
If several request the same lock, Java somehow decides
which will get it
The lock is released when the thread leaves the
synchronization block
synchronized(someObiject) { protected code }

The protected code has a mutual exclusion guarantee:
At most one thread can be in it

When released, some other thread can acquire the
lock

Locks are associated with objects

Every Object has its own built-in lock

Just the same, some applications prefer to create
special classes of objects to use just for locking

This is a stylistic decision and you should agree on it
with your teammates or learn the company policy if you
work at a company

Code is “thread safe” if it can handle multiple
threads using it... otherwise it is “unsafe”

Visualizing deadlock

A has a lock on X
wants a lock on Y

\Alock onY

wants a lock on X

Deadlocks always involve cycles

They can include 2 or more threads or processes in
a waiting cycle

Other properties:

The locks need to be mutually exclusive (no sharing of
the objects being locked)

The application won’t give up and go away (no timer
associated with the lock request)

There are no mechanisms for one thread to take locked
resources away from another % .
thread — no “preemption” ﬁ;“ﬁ

“... drop that mouse or
you’ll be down to 8 lives”

http://images.google.com/imgres?imgurl=http://julesfredrick.files.wordpress.com/2009/10/cat-robbery.jpg&imgrefurl=http://julesfredrick.wordpress.com/2009/10/19/ripoff-deception-scam/&usg=__5_6dUyW81H5MZAoPRCT2Nm4oRtY=&h=288&w=384&sz=47&hl=en&start=6&um=1&tbnid=wgSGQBtjyvSU0M:&tbnh=92&tbnw=123&prev=/images%3Fq%3Drobbery%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26um%3D1

Dealing with deadlocks

We recommend designing code to either
Acquire a lock, use it, then promptly release it, or

... acquire locks in some “fixed” order

Example, suppose that we have obijects q, b, ¢, ...

Now suppose that threads sometimes lock sets of

objects but always do so in alphabetical order
Can a lock-wait cycle arise?

... without cycles, no deadlocks can occur!

Higher level abstractions

Locking is a very low-level way to deal with
synchronization

Very nuts-and-bolts

So many programmers work with higher level
concepts. Sort of like ADTs for synchronization

WEe’'ll just look at one example today

There are many others; take cs4410 to learn more

A producer/consumer example

1 Thread A produces loaves of bread and puts them
on a shelf with capacity K

For example, maybe K=10

1 Thread B consumes the loaves by taking them off
the shelf

Thread A doesn’t want to overload the shelf

Thread B doesn’t wait to leave with empty arms

consumer

producer

http://images.google.com/imgres?imgurl=http://calorielab.com/news/wp-images/post-images/french-bakery-breads-and-pastries.jpg&imgrefurl=http://calorielab.com/news/2008/03/30/smart-choices-at-french-bakeries-and-pastry-shops/&usg=__rzNSfTbZRibDb_4JlZp5Oy6Oqew=&h=359&w=468&sz=110&hl=en&start=13&um=1&tbnid=GkHvFuCiJdMxJM:&tbnh=98&tbnw=128&prev=/images%3Fq%3Dbakery%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26sa%3DN%26um%3D1
http://images.google.com/imgres?imgurl=http://www.ciaprochef.com/fbi/images/podcasts/breadBaker/Bread-%26-Baker.jpg&imgrefurl=http://www.ciaprochef.com/fbi/podcasts/BreadAndBaker.html&usg=__rHQQ6ht33xKj1FmfeOgLHA5NK4Y=&h=340&w=300&sz=22&hl=en&start=1&um=1&tbnid=AiboYT8upHBwGM:&tbnh=119&tbnw=105&prev=/images%3Fq%3Dbaker%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26um%3D1
http://shakunharris.files.wordpress.com/2008/12/j0403213.jpg

Producer /Consumer example

class Bakery {
int nLoaves = 0; // Current number of waiting loaves

final int K = 10; // Shelf capacity

public synchronized void produce() {
while (nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall() ; // Signal: shelf not empty

}

public synchronized void consume () {
while (nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall() ; // Signal: shelf not full

Things to notice

Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

Notify wakes up just one waiting thread, notifyall
wakes all of them up

We used a while loop because we can’t predict
exactly which thread will wake up “next”

Bounded Buffer

Here we take our producer/consumer and add o
notion of passing something from the producer to

the consumer
For example, producer generates strings

Consumer takes those and puts them into a file

Question: why would we do this?

Keeps the computer more steadily busy

Producer /Consumer example

class Bakery {
int nLoaves = 0; // Current number of waiting loaves

final int K = 10; // Shelf capacity

public synchronized void produce() {
while (nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall() ; // Signal: shelf not empty

}

public synchronized void consume () {
while (nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall() ; // Signal: shelf not full

Bounded Buffer example

class BoundedBuffer<T> {
int putPtr = 0, getPtr = 0; // Next slot to use
int available = 0; // Items currently available

final int K = 10; // buffer capacity
T[] buffer = new T[K];

public synchronized void produce (T item) {

while (available == K) this.wait(); // Wait until not full
buffer[putPtr++ $ K] = item;

++available;

this.notifyall() ; // Signal: not empty

public synchronized T consume() {

while (available == 0) this.wait(); // Wait until not empty
-—-available;

T item = buffer[getPtr++ % K];

this.notifyall() ; // Signal: not full

return item;

In an ideal world...

Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking

This happens if they run at the same average rate

... and if the buffer is big enough to mask any brief
rate surges by either of the two

But if one does get ahead of the other, it waits

This avoids the risk of producing so many items that we
run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

Trickier example

Suppose we want to use locking in a BST
Goal: allow multiple threads to search the tree

But don’t want an insertion to cause a search thread to
throw an exception

Code we’re given is unsafe

class BST {

Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST (Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get (Object goal) {
if (name.equals (goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);

return right==null? null: right.get(goal) ;
}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {
if (name.equals(goal)) { this.value = value; return; }

if (name.compareTo (goal) < 0) {
if (left == null) { left = new BST(goal, value); return; }

left.put(goal, wvalue);

} else {
if (right == null) { right = new BST(goal, value); return; }

right.put(goal, wvalue);

Attempt #1

Just make both put and get synchronized:
public synchronized Object get(...) { ... }
public synchronized void put(...) { ... }

Let’s have a look....

Safe version: Attempt #1

class BST {

Object name; // Name of this node
l Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST (Object who, Object what) { name = who; value = what; }

// Returns value if found, else null

public synchronized Object get(Object goal) ({
if (name.equals (goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal) ;

}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put (Object goal, object value) {
if (name.equals(goal)) { this.value = value; return; }
if (name.compareTo (goal) < 0) {
if (left == null) { left = new BST(goal, value); return; }
left.put(goal, wvalue);
} else {
if (right == null) { right = new BST(goal, value); return; }
right.put(goal, wvalue);

Attempt #1

Just make both put and get synchronized:
public synchronized Object get(...) { ... }
public synchronized void put(...) { ... }

This works but it kills ALL concurrency

Only one thread can look at the tree at a time

Even if all the threads were doing “get

Visualizing attempt #1
B

PU'[(EI’I’]IG, ebO) Freddy Ge@Mﬂmmjn) must
netid: ff1 resames
Martin
mg8

Darleen Zelda
dd?® za/
Ernie
gbO

Attempt #2

put uses synchronized in method declaration

So it locks every node it visits

get tries to be fancy:

// Returns value if found, else null
public Object get(Object goal) {
synchronized (this) {
if (name.equals (goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal) ;

}

Actually this is identical to attempt 1! It only looks
different but in fact is doing exactly the same thing

Attempt #3

// Returns value if found, else null

public Object get(Object goal) {

boolean checkLeft = false, checkRight = false;

synchronized (this) {
if (name.equals (goal)) return value;

if (name.compareTo(goal) < 0) {

if (left==null) return null; else checklLeft = true;

} else {

i relinquishes lock on this — next
. lines are “unprotected”

if (checkLeft) return left.get(goal);
if (checkRight) return right.get(goal) ;

true;

/* Never executed but keeps Java happy */ return null;

Risk: “get” (read-only) threads sometimes look at nodes without
locks, but “put” always updates those same nodes.

According to JDK rules this is unsafe

Attempt #4

// Returns value if found, else null
public Object get (Object goal) {
BST checkLeft = null, checkRight = null;
synchronized (this) {
if (name.equals (goal)) return value;

if (name.compareTo(goal) < 0) {

if (left==null) return null; else checklLeft = left;

} else {
= right;

if (right==null) return null; else checkRight
}

}

if (checkLeft != null) return checkleft.get(goal) ;

if (checkRight !'= null) return checkright.get(goal) ;

/* Never executed but keeps Java happy */ return null;

This version is safe: only accesses the shared variables left and
right while holding locks
In fact it should work (I think)

Attempt #3 illustrates risks

The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various ways
Issue: put updates several fields:
parent.left (or parent.right) for its parent node

this.left and this.right and this.name and this.value

When locking is used correctly, multicore hardware will
correctly implement the updates

But if you look at values without locking, as we did in
Attempt #3, hardware can behave oddly!

Why can hardware cause bugs?

Issue here is covered in ¢s3410 & cs4410

Problem is that the hardware was designed under the requirement that
if threads contend to access shared memory, then readers and writers
must use locks

Solutions #1 and #2 used locks and so they worked, but had no
concurrency

Solution #3 violated the hardware rules and so you could see various
kinds of garbage in the fields you access!

Solution #4 should be correct, but perhaps not optimally concurrent
(doesn’t allow concurrency while even one “put” is active)

It's hard to design concurrent data structures!

More tricky things to know about

Java has actual “lock” objects
They support lock /unlock operations

But it isn’'t easy to use them correctly

Always need a try /finally structure

Lock somelock = new Lock() ;

try {
someLock.lock () ;
do-stuff-that-needs-a-lock() ;

}
finally {

someLock.unlock () ;

}

More tricky things to know about

7 Needs try /finally

Lock somelock = new Lock() ;

try {
somelLock.lock() ;
do-stuff-that-needs-a-lock() ;

}
finally {

someLock.unlock () ;

}

Complication: somelock.unlock() can only be called by
same thread that called lock.

Advanced issue: If your code catches exceptions and the
thread that called lock() might terminate, the lock can’t
be released! It remains locked forever... bad news...

Semaphores

Yet another option, mentioned Tuesday

But avoids this issue seen with locks

A Semaphore has an associated counter
When created you specify an initial value

Then each time the Semaphore is acquired the counter
counts down. And each time the Semaphore is
released, it counts up.

If zero, s.acquire() waits for a release

More tricky things to know about

With priorities Java can be very annoying

ALWAYS runs higher priority threads before lower
priority threads if scheduler must pick

The lower priority ones might never run at all

Consequence: risk of a “priority inversion”
High priority thread t1 is waiting for a lock, t2 has it

Thread t2 is runnable, but never gets scheduled
because t3 is higher priority and “busy”

Debugging concurrent code

There are Eclipse features to help you debug
concurrent code that uses locking

These include packages to detect race conditions or
non-deterministic code paths

Packages that will track locks in use and print nice
summaries if needed

Packages for analyzing performance issues

Heavy locking can kill performance on multicore machines

Basically, any sharing between threads on different cores is
a performance disaster

Summary

Use of multiple processes and multiple threads within each
process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)

But when using threads, beware!

Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions

Yet synchronization also creates risk of deadlocks

Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic (covered
in more detail in cs3410 and ¢cs4410)

Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

