
Lecture 21 – CS2110 – Fall 2013

RACE CONDITIONS AND

SYNCHRONIZATION

Reminder

 A “race condition” arises if two threads try and

share some data

 One updates it and the other reads it, or both

update the data

 In such cases it is possible that we could see the data

“in the middle” of being updated

 A “race condition”: correctness depends on the update

racing to completion without the reader managing to

glimpse the in-progress update

 Synchronization (aka mutual exclusion) solves this

2

Java Synchronization (Locking)
3

private Stack<String> stack = new Stack<String>();

public void doSomething() {

 synchronized (stack) {

 if (stack.isEmpty()) return;

 String s = stack.pop();

 }

 //do something with s...

}

• Put critical operations in a synchronized block

• The stack object acts as a lock

• Only one thread can own the lock at a time

 synchronized block

Java Synchronization (Locking)
4

public void doSomething() {

 synchronized (this) {

 ...

 }

}

public synchronized void doSomething() {

 ...

}

•You can lock on any object, including this

is equivalent to

How locking works

 Only one thread can “hold” a lock at a time

 If several request the same lock, Java somehow decides

which will get it

 The lock is released when the thread leaves the

synchronization block

 synchronized(someObject) { protected code }

 The protected code has a mutual exclusion guarantee:

At most one thread can be in it

 When released, some other thread can acquire the

lock

5

Locks are associated with objects

 Every Object has its own built-in lock

 Just the same, some applications prefer to create

special classes of objects to use just for locking

 This is a stylistic decision and you should agree on it

with your teammates or learn the company policy if you

work at a company

 Code is “thread safe” if it can handle multiple

threads using it… otherwise it is “unsafe”

6

Visualizing deadlock
7

Process

A

Process

B
X

Y

A has a lock on X

wants a lock on Y

B has a lock on Y

wants a lock on X

Deadlocks always involve cycles

 They can include 2 or more threads or processes in

a waiting cycle

 Other properties:

 The locks need to be mutually exclusive (no sharing of

the objects being locked)

 The application won’t give up and go away (no timer

associated with the lock request)

 There are no mechanisms for one thread to take locked

resources away from another

thread – no “preemption”

8

“... drop that mouse or

you’ll be down to 8 lives”

http://images.google.com/imgres?imgurl=http://julesfredrick.files.wordpress.com/2009/10/cat-robbery.jpg&imgrefurl=http://julesfredrick.wordpress.com/2009/10/19/ripoff-deception-scam/&usg=__5_6dUyW81H5MZAoPRCT2Nm4oRtY=&h=288&w=384&sz=47&hl=en&start=6&um=1&tbnid=wgSGQBtjyvSU0M:&tbnh=92&tbnw=123&prev=/images%3Fq%3Drobbery%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26um%3D1

Dealing with deadlocks

 We recommend designing code to either

 Acquire a lock, use it, then promptly release it, or

 ... acquire locks in some “fixed” order

 Example, suppose that we have objects a, b, c, ...

 Now suppose that threads sometimes lock sets of

objects but always do so in alphabetical order

 Can a lock-wait cycle arise?

 ... without cycles, no deadlocks can occur!

9

Higher level abstractions

 Locking is a very low-level way to deal with

synchronization

 Very nuts-and-bolts

 So many programmers work with higher level

concepts. Sort of like ADTs for synchronization

 We’ll just look at one example today

 There are many others; take cs4410 to learn more

10

A producer/consumer example

 Thread A produces loaves of bread and puts them

on a shelf with capacity K

 For example, maybe K=10

 Thread B consumes the loaves by taking them off

the shelf

 Thread A doesn’t want to overload the shelf

 Thread B doesn’t wait to leave with empty arms

11

producer shelves consumer

http://images.google.com/imgres?imgurl=http://calorielab.com/news/wp-images/post-images/french-bakery-breads-and-pastries.jpg&imgrefurl=http://calorielab.com/news/2008/03/30/smart-choices-at-french-bakeries-and-pastry-shops/&usg=__rzNSfTbZRibDb_4JlZp5Oy6Oqew=&h=359&w=468&sz=110&hl=en&start=13&um=1&tbnid=GkHvFuCiJdMxJM:&tbnh=98&tbnw=128&prev=/images%3Fq%3Dbakery%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26sa%3DN%26um%3D1
http://images.google.com/imgres?imgurl=http://www.ciaprochef.com/fbi/images/podcasts/breadBaker/Bread-%26-Baker.jpg&imgrefurl=http://www.ciaprochef.com/fbi/podcasts/BreadAndBaker.html&usg=__rHQQ6ht33xKj1FmfeOgLHA5NK4Y=&h=340&w=300&sz=22&hl=en&start=1&um=1&tbnid=AiboYT8upHBwGM:&tbnh=119&tbnw=105&prev=/images%3Fq%3Dbaker%26hl%3Den%26rls%3Dcom.microsoft:en-us:IE-SearchBox%26rlz%3D1I7GGLD%26um%3D1
http://shakunharris.files.wordpress.com/2008/12/j0403213.jpg

Producer/Consumer example
12

class Bakery {

 int nLoaves = 0; // Current number of waiting loaves

 final int K = 10; // Shelf capacity

public synchronized void produce() {

 while(nLoaves == K) this.wait(); // Wait until not full

 ++nLoaves;

 this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {

 while(nLoaves == 0) this.wait(); // Wait until not empty

 --nLoaves;

 this.notifyall(); // Signal: shelf not full

}

}

Things to notice

 Wait needs to wait on the same object that you

used for synchronizing (in our example, “this”, which

is this instance of the Bakery)

 Notify wakes up just one waiting thread, notifyall

wakes all of them up

 We used a while loop because we can’t predict

exactly which thread will wake up “next”

13

Bounded Buffer

 Here we take our producer/consumer and add a

notion of passing something from the producer to

the consumer

 For example, producer generates strings

 Consumer takes those and puts them into a file

 Question: why would we do this?

 Keeps the computer more steadily busy

14

Producer/Consumer example
15

class Bakery {

 int nLoaves = 0; // Current number of waiting loaves

 final int K = 10; // Shelf capacity

public synchronized void produce() {

 while(nLoaves == K) this.wait(); // Wait until not full

 ++nLoaves;

 this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {

 while(nLoaves == 0) this.wait(); // Wait until not empty

 --nLoaves;

 this.notifyall(); // Signal: shelf not full

}

}

Bounded Buffer example
16

class BoundedBuffer<T> {

 int putPtr = 0, getPtr = 0; // Next slot to use

 int available = 0; // Items currently available

 final int K = 10; // buffer capacity

 T[] buffer = new T[K];

public synchronized void produce(T item) {

 while(available == K) this.wait(); // Wait until not full

 buffer[putPtr++ % K] = item;

 ++available;

 this.notifyall(); // Signal: not empty

}

public synchronized T consume() {

 while(available == 0) this.wait(); // Wait until not empty

 --available;

 T item = buffer[getPtr++ % K];

 this.notifyall(); // Signal: not full

 return item;

}

}

In an ideal world…

 Bounded buffer allows producer and consumer to

both run concurrently, with neither blocking

 This happens if they run at the same average rate

 … and if the buffer is big enough to mask any brief

rate surges by either of the two

 But if one does get ahead of the other, it waits

 This avoids the risk of producing so many items that we

run out of computer memory for them. Or of

accidentally trying to consume a non-existent item.

17

Trickier example

 Suppose we want to use locking in a BST

 Goal: allow multiple threads to search the tree

 But don’t want an insertion to cause a search thread to

throw an exception

18

Code we’re given is unsafe
19

class BST {

 Object name; // Name of this node

 Object value; // Value of associated with that name

 BST left, right; // Children of this node

 // Constructor

 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null

public Object get(Object goal) {

 if(name.equals(goal)) return value;

 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);

 return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node

public void put(Object goal, object value) {

 if(name.equals(goal)) { this.value = value; return; }

 if(name.compareTo(goal) < 0) {

 if(left == null) { left = new BST(goal, value); return; }

 left.put(goal, value);

 } else {

 if(right == null) { right = new BST(goal, value); return; }

 right.put(goal, value);

 }

}

}

Attempt #1

 Just make both put and get synchronized:

 public synchronized Object get(…) { … }

 public synchronized void put(…) { … }

 Let’s have a look….

20

Safe version: Attempt #1
21

class BST {

 Object name; // Name of this node

 Object value; // Value of associated with that name

 BST left, right; // Children of this node

 // Constructor

 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null

public synchronized Object get(Object goal) {

 if(name.equals(goal)) return value;

 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);

 return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node

public synchronized void put(Object goal, object value) {

 if(name.equals(goal)) { this.value = value; return; }

 if(name.compareTo(goal) < 0) {

 if(left == null) { left = new BST(goal, value); return; }

 left.put(goal, value);

 } else {

 if(right == null) { right = new BST(goal, value); return; }

 right.put(goal, value);

 }

}

}

Attempt #1

 Just make both put and get synchronized:

 public synchronized Object get(…) { … }

 public synchronized void put(…) { … }

 This works but it kills ALL concurrency

 Only one thread can look at the tree at a time

 Even if all the threads were doing “get”!

22

Visualizing attempt #1
23

Cathy

cd4

Freddy

netid: ff1

Martin

mg8

Andy

am7
Zelda

za7

Darleen

dd9

Ernie

gb0

Put(Ernie, eb0)
Get(Martin)… must

wait!

Get(Martin)…

resumes

Attempt #2

 put uses synchronized in method declaration

 So it locks every node it visits

 get tries to be fancy:

 Actually this is identical to attempt 1! It only looks

different but in fact is doing exactly the same thing

24

// Returns value if found, else null

public Object get(Object goal) {

 synchronized(this) {

 if(name.equals(goal)) return value;

 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);

 return right==null? null: right.get(goal);

 }

}

Attempt #3

 Risk: “get” (read-only) threads sometimes look at nodes without

locks, but “put” always updates those same nodes.

 According to JDK rules this is unsafe

25

// Returns value if found, else null

public Object get(Object goal) {

 boolean checkLeft = false, checkRight = false;

 synchronized(this) {

 if(name.equals(goal)) return value;

 if(name.compareTo(goal) < 0) {

 if (left==null) return null; else checkLeft = true;

 } else {

 if(right==null) return null; else checkRight = true;

 }

 }

 if (checkLeft) return left.get(goal);

 if (checkRight) return right.get(goal);

 /* Never executed but keeps Java happy */ return null;

}

relinquishes lock on this – next

lines are “unprotected”

Attempt #4

 This version is safe: only accesses the shared variables left and

right while holding locks

 In fact it should work (I think)

26

// Returns value if found, else null

public Object get(Object goal) {

 BST checkLeft = null, checkRight = null;

 synchronized(this) {

 if(name.equals(goal)) return value;

 if(name.compareTo(goal) < 0) {

 if (left==null) return null; else checkLeft = left;

 } else {

 if(right==null) return null; else checkRight = right;

 }

 }

 if (checkLeft != null) return checkleft.get(goal);

 if (checkRight != null) return checkright.get(goal);

 /* Never executed but keeps Java happy */ return null;

}

Attempt #3 illustrates risks

 The hardware itself actually needs us to use locking

and attempt 3, although it looks right in Java, could

actually malfunction in various ways

 Issue: put updates several fields:

 parent.left (or parent.right) for its parent node

 this.left and this.right and this.name and this.value

 When locking is used correctly, multicore hardware will

correctly implement the updates

 But if you look at values without locking, as we did in

Attempt #3, hardware can behave oddly!

27

Why can hardware cause bugs?

 Issue here is covered in cs3410 & cs4410

 Problem is that the hardware was designed under the requirement that

if threads contend to access shared memory, then readers and writers

must use locks

 Solutions #1 and #2 used locks and so they worked, but had no

concurrency

 Solution #3 violated the hardware rules and so you could see various

kinds of garbage in the fields you access!

 Solution #4 should be correct, but perhaps not optimally concurrent

(doesn’t allow concurrency while even one “put” is active)

 It’s hard to design concurrent data structures!

28

More tricky things to know about

 Java has actual “lock” objects

 They support lock/unlock operations

 But it isn’t easy to use them correctly

 Always need a try/finally structure

29

Lock someLock = new Lock();

try {

 someLock.lock();

 do-stuff-that-needs-a-lock();

}

finally {

 someLock.unlock();

}

More tricky things to know about

 Needs try/finally

 Complication: someLock.unlock() can only be called by

same thread that called lock.

 Advanced issue: If your code catches exceptions and the

thread that called lock() might terminate, the lock can’t

be released! It remains locked forever... bad news...

30

Lock someLock = new Lock();

try {

 someLock.lock();

 do-stuff-that-needs-a-lock();

}

finally {

 someLock.unlock();

}

Semaphores

 Yet another option, mentioned Tuesday

 But avoids this issue seen with locks

 A Semaphore has an associated counter

 When created you specify an initial value

 Then each time the Semaphore is acquired the counter

counts down. And each time the Semaphore is

released, it counts up.

 If zero, s.acquire() waits for a release

31

More tricky things to know about

 With priorities Java can be very annoying

 ALWAYS runs higher priority threads before lower

priority threads if scheduler must pick

 The lower priority ones might never run at all

 Consequence: risk of a “priority inversion”

 High priority thread t1 is waiting for a lock, t2 has it

 Thread t2 is runnable, but never gets scheduled

because t3 is higher priority and “busy”

32

Debugging concurrent code

 There are Eclipse features to help you debug

concurrent code that uses locking

 These include packages to detect race conditions or

non-deterministic code paths

 Packages that will track locks in use and print nice

summaries if needed

 Packages for analyzing performance issues

 Heavy locking can kill performance on multicore machines

 Basically, any sharing between threads on different cores is

a performance disaster

33

Summary
34

 Use of multiple processes and multiple threads within each
process can exploit concurrency
 Which may be real (multicore) or “virtual” (an illusion)

 But when using threads, beware!
 Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions

 Yet synchronization also creates risk of deadlocks

 Even with proper locking concurrent programs can have other
problems such as “livelock”

 Serious treatment of concurrency is a complex topic (covered
in more detail in cs3410 and cs4410)

 Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

