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Readings? 

 This lecture is based on chapter 28 

 

 Homework:  (a simple self-test question): Suppose 

you were doing your own version of Google maps.  

You are writing code that tells the user how to get 

from Ithaca to Miami South Beach.  Would you start 

by running Dijkstra’s, Prim’s, or Kruskel’s algorithm? 
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Representations of Graphs 

List Matrix 

1 2 

3 4 

3 

Danaus Park 



Adjacency Matrix or Adjacency List or “Park”? 

 Danaus is a kind of graph 

 In A3 and A5 we’ve simply captured it into a 2-D array 

 What graph would Danaus look like if you instead 

wanted to draw a picture of it as a graph? 

 Each tile would be a node 

 Each single move in a flyable path would be an edge 

 Edges present if you can get from [x][y] to [x’][y’] 

 

 Should the edges be weighted? 

 In A6 wind effects might argue for a weighted graph! 



Representing one thing two ways 

 In computer science we often build and use multiple 

representations of the same data 

 

 For A5 this isn’t really necessary, but in A6 (coming 

soon!) you’ll need to work with both explicit graph 

representations of the park and with the 2-D form 

in order to have a high quality solution 

 For a lower quality solution this won’t be needed 

 Best solutions might be 100x or more faster… 
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Shortest Paths in Graphs 

 Finding the shortest (min-cost) path in a graph is a problem 

that occurs often 

 Find the shortest route between Ithaca and West Lafayette, IN 

 Result depends on our notion of cost 

 Least mileage… or least time… or cheapest 

 Perhaps, expends the least power in the butterfly while flying fastest 

 Many “costs” can be represented as edge weights 

 A butterfly that optimizes to fly in bright sunshine, or to most efficiently 

collect a list of flowers, is optimizing over possible path lengths that are 

computed using one or perhaps multiple such factors: machine learning 

 How do we find a shortest path? 

6 



7 

Dijkstra’s shortest-path algorithm 
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Edsger Dijkstra, in an interview in 2010 (CACM):  

 … the algorithm for the shortest path, which I designed in about 

20 minutes. One morning I was shopping in Amsterdam with my 

young fiance, and tired, we sat down on the cafe terrace to drink a 

cup of coffee, and I was just thinking about whether I could do 

this, and I then designed the algorithm for the shortest path. As I 

said, it was a 20-minute invention. [Took place in 1956] 

 

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 

Mathematik 1, 269–271 (1959). 

Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his 

contributions. As a historical record, this is a gold mine. 

http://www.dijkstrascry.com
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Dijkstra’s shortest-path algorithm 
8 

Dijsktra describes the algorithm in English: 

When he designed it in 1956, most people were programming in 

assembly language! 

Only one high-level language: Fortran, developed by John 

Backus at IBM and not quite finished. 

No theory of order-of-execution time —topic yet to be developed. 

In paper, Dijsktra says, “my solution is preferred to another one 

… “the amount of work to be done seems considerably less.” 

 

Dijkstra, E.W. A note on two problems in Connexion with graphs. 

Numerische Mathematik 1, 269–271 (1959). 
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Dijkstra’s shortest path algorithm 

 

 

The n (> 0) nodes of a graph numbered 0..n-1. 

L[0] = 2 

L[1] = 5 

L[2] = 6 

L[3] = 7 

L[4] = 0 

v 
4 

2 4 
1 

3 

3 

Each edge has a positive weight. 

Some node v be selected as the start node. 

Use an array L[0..n-1]: for each node w, store in 

L[w] the length of the shortest path from v to w. 

weight(v1, v2) is the weight of the edge from node v1 to v2. 

Calculate length of shortest path from v to each node. 
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Dijkstra’s shortest path algorithm 

 

 Develop algorithm, not just present it. 

Need to show you the state of affairs —the relation among all 

variables— just before each node i  is given its final value L[i]. 

This relation among the variables is an invariant, because 

it is always true. 

Because each node i (except the first) is given 

its final value L[i] during an iteration of a loop, 

the invariant is called a loop invariant. 

L[0] = 2 

L[1] = 5 

L[2] = 6 

L[3] = 7 

L[4] = 0 
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1. For a Settled node s, L[s] is length of shortest v  s path.    

2. All edges leaving S go to F.    

3. For a Frontier node f, L[f] is length of shortest v  f path 

    using only red nodes (except for f) 

4. For a Far-off node b, L[b] = ∞  

Frontier  

F 

Settled  

S 

   Far off 

f 

4 

2 4 
1 

3 

3 
4 

0 

1 

2 
3 

f 

(edges leaving the black set and 

edges from the blue to the red set 

are not shown) 

5. L[v] = 0, L[w] > 0 for w ≠ v 

The loop invariant 

 

 

v 
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1. For a Settled node s, L[s] is length of shortest v  r path.    

2. All edges leaving S go to F.    

3. For a Frontier node f, L[f] is length of shortest v  f path 

    using only Settled nodes (except for f). 

4. For a Far-off node b, L[b] = ∞.         

Theorem. For a node f in F with minimum L value (over nodes in 

F), L[f] is the length of the shortest path from v to f. 

Frontier  

F 

Settled  

S 

Far off 

f 

Theorem about the invariant 

f v g 

g 

Case 1: v is in S. 

Case 2: v is in F. Note that L[v] is 0; it has minimum L value 

L[g] ≥ L[f] 

5. L[v] = 0, L[w] > 0 for w ≠ v 

. 
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1.  For s, L[s] is length of 

     shortest v s path.    

2.  Edges leaving S go to F.    

 S                  F          Far off 

3.  For f, L[f] is length of 

     shortest v  f path using 

     red nodes (except for f). 

4.  For b in Far off, L[b] = ∞ 

5.  L[v] = 0, L[w] > 0 for w ≠ v 

  

For all w, L[w]= ∞;   L[v]= 0; 

F=  { v };  S=  { }; 

Theorem: For a node f in F 

with min L value, L[f] is 

shortest path length 

v 

The algorithm 

Loopy question 1:  

How does the loop start? What 

is done to truthify the invariant? 



14 

When does loop stop? When is 

array L completely calculated? 

while                 { 

     

 
 

 

 

 

 

 

} 

1.  For s, L[s] is length of 

     shortest v  s path.    

2.  Edges leaving S go to F.    

 S                  F          Far off 

3.  For f, L[f] is length of 

     shortest v  f path using 

     red nodes (except for f). 

4.  For b in Far off, L[b] = ∞ 

5. L[v] = 0, L[w] > 0 for w ≠ v 

 

For all w, L[w]= ∞;   L[v]= 0; 

F=  { v };  S=  { }; 

Theorem: For a node f in F 

with min L value, L[f] is 

shortest path length 

F ≠  {} 

The algorithm 

Loopy question 2:  
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How is progress toward 

termination accomplished? 

while                 { 

     

 
 

 

 

 

 

 

} 

f= node in F with min L value; 

Remove f from F, add it to S; 1.  For s, L[s] is length of 

     shortest v  s path.    

2.  Edges leaving S go to F.    

 S                  F          Far off 

3.  For f, L[f] is length of 

     shortest v   f path using 

     red nodes (except for f). 

4.  For b, L[b] = ∞ 

5.  L[v] = 0, L[w] > 0 for w ≠ v 

 

For all w, L[w]= ∞;   L[v]= 0; 

F=  { v };  S=  { }; 

Theorem: For a node f in F 

with min L value, L[f] is 

shortest path length 

f 

F ≠  {} 

The algorithm 

Loopy question 3:  

f 
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How is the invariant 

maintained? 

while                 { 

     

 
 

 

 

 

 

 

} 

f= node in F with min L value; 

Remove f from F, add it to S; 1.  For s, L[s] is length of 

     shortest v  s path.    

2.  Edges leaving S go to F.    

 S                  F          Far off 

3.  For f, L[f] is length of 

     shortest v  f path using 

     red nodes (except for f). 

4.  For b, L[b] = ∞ 

5. L[v] = 0, L[w] > 0 for w ≠ v 

 

For all w, L[w]= ∞;   L[v]= 0; 

F=  { v };  S=  { }; 

Theorem: For a node f in F 

with min L value, L[f] is 

shortest path length 

F ≠  {} 

for each edge (f,w) { 

    

    

 

} 

if (L[w]  is ∞) add w to F; 

if (L[f] + weight (f,w) < L[w]) 

    L[w]= L[f] + weight(f,w); 

The algorithm 

Loopy question 4:  

f 
w 

w 

Algorithm is finished 

w 
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For all w, L[w]= ∞;  L[v]= 0; 

F=  { v };  S=  { }; 

while F ≠  {}  { 

   f= node in F with min L value; 

       Remove f from F, add it to S; 

   for each edge (f,w) { 

     if (L[w]  is ∞) add w to F; 

     if (L[f] + weight (f,w) < L[w]) 

       L[w]= L[f] + weight(f,w); 

  } 

} 

About implementation 1. No need to implement S. 

2. Implement F as a min-heap. 

3. Instead of ∞, use 

   Integer.MAX_VALUE. 

if (L[w] == Integer.MAX_VAL) { 

    L[w]=  L[f] + weight(f,w); 

    add w to F; 

} else  L[w]= Math.min(L[w], 

                 L[f] + weight(f,w)); 

S F 



1
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For all w, L[w]= ∞;  L[v]= 0; 

F=  { v }; 

while F  ≠  {} { 

   f=  node in F with min L value; 

   Remove f from F; 

   for each edge (f,w) { 

      if (L[w] == Integer.MAX_VAL) { 

           L[w]=  L[f] + weight(f,w); 

           add w to F; 

      } 

      else L[w]=   

           Math.min(L[w], L[f] + weight(f,w)); 

   } 

} 

Execution time 
S F 

n nodes, reachable from v. e ≥ n-1 edges 

                              n–1  ≤  e  ≤  n*n 

O(n) 

O(n log n) 

O(e) 

   O(n-1) 

   O(n log n) 

O((e-(n-1)) log n) 

O(n) 

O(n + e) 

outer loop: 

n iterations. 

Condition 

evaluated 

n+1 times. 
 

inner loop: 

e iterations. 

Condition 

evaluated 

n + e times. 

 Complete graph: O(n2 log n). Sparse graph: O(n log n) 

   
O(n) 

O(1) 



Dijkstra’s Algorithm 

dijkstra(s) { 

   // Note: weight(s,t) = cost of the s,t edge if present 

   //                     Integer.MAX_VALUE otherwise 

 
 D[s] = 0; D[t] = weight(s,t), t ≠ s; 

   mark s; 

   while (some vertices are unmarked) { 

     v = unmarked node with smallest D; 

     mark v; 

     for (each w adjacent to v) { 

        D[w] = min(D[w], D[v] + weight(v,w)); 

     } 

   } 

} 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
21 



1.6 

1.5 

1 2 

3 4 

2.4 

0.9 1.5 

3.1 

0.1 

X 

4.6 

Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Dijkstra’s Algorithm 
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Shortest Paths for Unweighted Graphs – 

A Special Case 

Use breadth-first search 

Time is O(n + m) in adj list 

representation, O(n2) in adj 

matrix representation 

 

S B A 

C D E 

F 
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