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SORTING AND ASYMPTOTIC
COMPLEXITY

Lecture 14
CS2110 – Fall 2013

Reading and Homework

 Texbook, chapter 8 (general concepts) and 9 (MergeSort, 
QuickSort)

 Thought question: Cloud computing systems sometimes sort 
data sets with hundreds of billions of items – far too much to 
fit in any one computer.    So they use multiple computers to 
sort the data.  Suppose you had N computers and each has 
room for D items, and you have a data set with N*D/2 items to 
sort.  How could you sort the data?  Assume the data is initially 
in a big file, and you’ll need to read the file, sort the data, 
then write a new file in sorted order.

2

InsertionSort
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Worst-case: O(n2)
(reverse-sorted input)

Best-case: O(n)
(sorted input)

Expected case: O(n2)

Expected number of 
inversions: n(n–1)/4

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

// Push a[i] down to its sorted position
//         in a[0..i]
int temp = a[i];
int k;
for (k = i;  0 < k && temp < a[k–1];  k– –)

a[k] = a[k–1];
a[k] = temp;

} Many people sort cards this way

Invariant of main loop: a[0..i-1] is sorted

Works especially well when input is nearly sorted

SelectionSort
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Another common way for 
people to sort cards

Runtime
Worst-case O(n2)

 Best-case O(n2)

 Expected-case O(n2)

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

int m= index of minimum of a[i..];
Swap b[i] and b[m];

}

sorted, smaller values         larger valuesa
0                                    i                                 length

Each iteration, swap min value of this section into a[i]

Divide & Conquer?
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It often pays to
Break the problem into smaller subproblems,

Solve the subproblems separately, and then

Assemble a final solution

This technique is called divide-and-conquer
Caveat: It won’t help unless the partitioning and 

assembly processes are inexpensive

Can we apply this approach to sorting?

MergeSort
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 Quintessential divide-and-conquer algorithm

 Divide array into equal parts, sort each part, then merge

 Questions:

Q1: How do we divide array into two equal parts?

A1: Find middle index: a.length/2

Q2: How do we sort the parts?

A2: Call MergeSort recursively!

Q3: How do we merge the sorted subarrays?

A3: Write some (easy) code
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Merging Sorted Arrays A and B into C 
7

C: merged array

Array B

Array A

k

i

j
1 3 4 4 6 7

4 7 7 8 9

1 3 4 6 8 

A[0..i-1]  and B[0..j-1] 
have been copied into
C[0..k-1].

C[0..k-1] is sorted.

Next, put a[i] in c[k], 
because a[i] < b[j].

Then increase k and i.

Picture shows situation after copying{4, 7} 
from A and {1, 3, 4, 6} from B into C

Merging Sorted Arrays A and B into C
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 Create array C of size: size of A + size of B

 i= 0;  j= 0;  k= 0;    // initially, nothing copied

 Copy smaller of A[i] and B[j] into C[k]

 Increment i or j,  whichever one was used, and k

 When either A or B becomes empty, copy remaining 
elements from the other array (B or A, respectively) into C

This tells what has been done so far:

A[0..i-1]  and B[0..j-1] have been placed in C[0..k-1].

C[0..k-1] is sorted.

MergeSort Analysis
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Outline (code on website)

Split array into two halves

Recursively sort each half

Merge two halves

Merge: combine two sorted 
arrays into one sorted array

Rule: always choose smallest 
item

Time: O(n) where n is the 
total size of the two arrays

Runtime recurrence

T(n): time to sort array of size n
T(1) = 1

T(n) = 2T(n/2) + O(n)

Can show by induction that 
T(n) is O(n log n)

Alternatively, can see that 
T(n) is O(n log n) by looking at 
tree of recursive calls

MergeSort Notes
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 Asymptotic complexity: O(n log n)
Much faster than O(n2)

 Disadvantage
 Need extra storage for temporary arrays

 In practice, can be a disadvantage, even though MergeSort
is asymptotically optimal for sorting

 Can do MergeSort in place, but very tricky (and slows 
execution significantly)

 Good sorting algorithms that do not use so much 
extra storage?
Yes: QuickSort

QuickSort
11

Idea To sort b[h..k], which has an arbitrary value x in b[h]:

first swap array values around until b[h..k] looks like this:

x                          ?                     

h   h+1                                                 k            

<= x                x           >= x                                               

h                              j                           k            

Then sort b[h..j-1] and b[j+1..k]  —how do you do that?

Recursively!

x is called 
the pivot

20 31   24 19  45   56 4    65 5    72 14   99
12

pivot partition
j

19   4     5   14    20   31  24 45 56 65   72  99     

Not yet 
sorted

Not yet 
sorted

QuickSort

20 24   31   45  56   65   72  994     5   14   19

QuickSort

sorted
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In-Place Partitioning

 On the previous slide we just moved the items to 
partition them

 But in fact this would require an extra array to copy 
them into

 Developer of QuickSort came up with a better idea
 In place partitioning cleverly splits the data in place
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In-Place Partitioning
14

Key issues
 How to choose a pivot?

 How to partition array 
in place?

Partitioning in place
 Takes O(n) time (next 

slide)

 Requires no extra space

Choosing pivot
 Ideal pivot: the median, since 

it splits array in half
Computing median of 

unsorted array is O(n), quite 
complicated

Popular heuristics: Use
 first array value (not good)
 middle array value
 median of first, middle, last,

values GOOD!
Choose a random element

Change b[h..k]
from this:

to this by repeatedly
swapping array 
elements:

In-Place Partitioning
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x                          ?                     

h   h+1                                                 k            

<= x                x           >= x                         

h                              j                           k            

b

b

Do it one swap at
a time, keeping the
array looking like 
this. At each step, swap 
b[j+1] with something

<= x            x      ?            >= x         

h                     j                t                   k            

b

Start with:      j= h; t= k;

In-Place Partitioning
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<= x            x      ?            >= x         

h                     j                t                   k            

b

j= h; t= k;
while (j < t) {

if (b[j+1] <= x) {
Swap b[j+1] and b[j];   j= j+1;

} else {
Swap b[j+1] and b[t];   t= t-1;

}
}

Terminates when j = t, 
so the “?” segment is 
empty, so diagram 
looks like result 
diagram

Initially, with j = h 
and t = k, this 
diagram looks like 
the start diagram

In-Place Partitioning
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How can we move all the blues to the left of all the reds?
• Keep two indices, LEFT and RIGHT
• Initialize LEFT at start of array and RIGHT at end of array

Invariant: all elements to left of LEFT are blue
all elements to right of RIGHT are red

• Keep advancing indices until they pass, maintaining invariant

18

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap
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 Once indices cross, partitioning is done
 If you replace blue with ≤ p and red with ≥ p, this is

exactly what we need for QuickSort partitioning
 Notice that after partitioning, array is partially 

sorted
 Recursive calls on partitioned subarrays will sort 

subarrays
 No need to copy/move arrays, since we partitioned 

in place

QuickSort procedure
20

/** Sort b[h..k]. */

public static void QS(int[] b, int h, int k) {

if (b[h..k] has < 2 elements) return;

int j=  partition(b, h, k);

// We know b[h..j–1] <= b[j] <= b[j+1..k]

// So we need to sort b[h..j-1] and b[j+1..k]

QS(b, h, j-1); 

QS(b, j+1, k);

}

Base case

Function does the 
partition algorithm and 
returns position j of 
pivot

QuickSort versus MergeSort
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/** Sort b[h..k] */

public static void QS

(int[] b, int h, int k) {

if (k – h < 1) return;

int j=  partition(b, h, k);

QS(b, h, j-1); 

QS(b, j+1, k);

}

/** Sort b[h..k] */

public static void MS

(int[] b, int h, int k) {

if (k  – h < 1) return;

MS(b, h, (h+k)/2); 

MS(b, (h+k)/2 + 1, k);

merge(b, h, (h+k)/2, k);

}

One processes the array then recurses.
One recurses then processes the array. 

QuickSort Analysis
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Runtime analysis (worst-case)

 Partition can produce this:

 Runtime recurrence:  T(n) = T(n–1) + n

 Can be solved to show worst-case T(n) is O(n2)

 Space can be O(n) —max depth of recursion

Runtime analysis (expected-case)

 More complex recurrence

 Can be solved to show expected T(n) is O(n log n)

Improve constant factor by avoiding QuickSort on small sets

 Use InsertionSort (for example) for sets of size, say, ≤ 9

 Definition of small depends on language, machine, etc.

p > p

Sorting Algorithm Summary
23

We discussed
 InsertionSort
 SelectionSort
 MergeSort
 QuickSort

Other sorting algorithms
 HeapSort (will revisit)
 ShellSort (in text)
 BubbleSort (nice name)
 RadixSort
 BinSort
 CountingSort

Why so many?  Do computer 
scientists have some kind of sorting 
fetish or what?

Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, Hea
Expected O(n log n): 

Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space: Ins, Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Lower Bound for Comparison Sorting
24

Goal: Determine minimum 
time required to sort n items

Note: we want worst-case,
not best-case time

Best-case doesn’t tell us 
much. E.g. Insertion Sort 
takes O(n) time on already-
sorted input

Want to know worst-case 
time for best possible 
algorithm

How can we prove anything 
about the best possible
algorithm?

Want to find characteristics that 
are common to all sorting 
algorithms

Limit attention to comparison-
based algorithms and try to 
count number of comparisons
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Comparison Trees
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 Comparison-based algorithms make 
decisions based on comparison of 
data elements

 Gives a comparison tree

 If algorithm fails to terminate for 
some input, comparison tree is infinite

 Height of comparison tree represents 
worst-case number of comparisons for 
that algorithm

 Can show: Any correct comparison-
based algorithm must make at least 
n log n comparisons in the worst case

a[i] < a[j]
yesno

Lower Bound for Comparison Sorting
26

 Say we have a correct comparison-based algorithm

 Suppose we want to sort the elements in an array b[]

 Assume the elements of b[] are distinct

 Any permutation of the elements is initially possible

 When done, b[] is sorted

 But the algorithm could not have taken the same path in 
the comparison tree on different input permutations

Lower Bound for Comparison Sorting
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How many input permutations are possible?  n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree 

To have at least n! ~ 2n log n leaves, it must have height at 
least n log n (since it is only binary branching, the number 
of nodes at most doubles at every depth)

Therefore its longest path must be of length at least 
n log n, and that it its worst-case running time

java.lang.Comparable<T> Interface
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public int compareTo(T x);

Return a negative, zero, or positive value
negative if this is before x
0 if this.equals(x)

positive if this is after x

Many classes implement Comparable
String, Double, Integer, Character, Date, …

Class implements Comparable? Its method compareTo is 
considered to define that class’s natural ordering

Comparison-based sorting methods should work with Comparable
for maximum generality


