
10/16/2013

1

SORTING AND ASYMPTOTIC
COMPLEXITY

Lecture 14
CS2110 – Fall 2013

Reading and Homework

 Texbook, chapter 8 (general concepts) and 9 (MergeSort,
QuickSort)

 Thought question: Cloud computing systems sometimes sort
data sets with hundreds of billions of items – far too much to
fit in any one computer. So they use multiple computers to
sort the data. Suppose you had N computers and each has
room for D items, and you have a data set with N*D/2 items to
sort. How could you sort the data? Assume the data is initially
in a big file, and you’ll need to read the file, sort the data,
then write a new file in sorted order.

2

InsertionSort
3

Worst-case: O(n2)
(reverse-sorted input)

Best-case: O(n)
(sorted input)

Expected case: O(n2)

Expected number of
inversions: n(n–1)/4

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

// Push a[i] down to its sorted position
// in a[0..i]
int temp = a[i];
int k;
for (k = i; 0 < k && temp < a[k–1]; k– –)

a[k] = a[k–1];
a[k] = temp;

} Many people sort cards this way

Invariant of main loop: a[0..i-1] is sorted

Works especially well when input is nearly sorted

SelectionSort

4

Another common way for
people to sort cards

Runtime
Worst-case O(n2)

 Best-case O(n2)

 Expected-case O(n2)

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

int m= index of minimum of a[i..];
Swap b[i] and b[m];

}

sorted, smaller values larger valuesa
0 i length

Each iteration, swap min value of this section into a[i]

Divide & Conquer?
5

It often pays to
Break the problem into smaller subproblems,

Solve the subproblems separately, and then

Assemble a final solution

This technique is called divide-and-conquer
Caveat: It won’t help unless the partitioning and

assembly processes are inexpensive

Can we apply this approach to sorting?

MergeSort
6

 Quintessential divide-and-conquer algorithm

 Divide array into equal parts, sort each part, then merge

 Questions:

Q1: How do we divide array into two equal parts?

A1: Find middle index: a.length/2

Q2: How do we sort the parts?

A2: Call MergeSort recursively!

Q3: How do we merge the sorted subarrays?

A3: Write some (easy) code

10/16/2013

2

Merging Sorted Arrays A and B into C
7

C: merged array

Array B

Array A

k

i

j
1 3 4 4 6 7

4 7 7 8 9

1 3 4 6 8

A[0..i-1] and B[0..j-1]
have been copied into
C[0..k-1].

C[0..k-1] is sorted.

Next, put a[i] in c[k],
because a[i] < b[j].

Then increase k and i.

Picture shows situation after copying{4, 7}
from A and {1, 3, 4, 6} from B into C

Merging Sorted Arrays A and B into C
8

 Create array C of size: size of A + size of B

 i= 0; j= 0; k= 0; // initially, nothing copied

 Copy smaller of A[i] and B[j] into C[k]

 Increment i or j, whichever one was used, and k

 When either A or B becomes empty, copy remaining
elements from the other array (B or A, respectively) into C

This tells what has been done so far:

A[0..i-1] and B[0..j-1] have been placed in C[0..k-1].

C[0..k-1] is sorted.

MergeSort Analysis
9

Outline (code on website)

Split array into two halves

Recursively sort each half

Merge two halves

Merge: combine two sorted
arrays into one sorted array

Rule: always choose smallest
item

Time: O(n) where n is the
total size of the two arrays

Runtime recurrence

T(n): time to sort array of size n
T(1) = 1

T(n) = 2T(n/2) + O(n)

Can show by induction that
T(n) is O(n log n)

Alternatively, can see that
T(n) is O(n log n) by looking at
tree of recursive calls

MergeSort Notes
10

 Asymptotic complexity: O(n log n)
Much faster than O(n2)

 Disadvantage
 Need extra storage for temporary arrays

 In practice, can be a disadvantage, even though MergeSort
is asymptotically optimal for sorting

 Can do MergeSort in place, but very tricky (and slows
execution significantly)

 Good sorting algorithms that do not use so much
extra storage?
Yes: QuickSort

QuickSort
11

Idea To sort b[h..k], which has an arbitrary value x in b[h]:

first swap array values around until b[h..k] looks like this:

x ?

h h+1 k

<= x x >= x

h j k

Then sort b[h..j-1] and b[j+1..k] —how do you do that?

Recursively!

x is called
the pivot

20 31 24 19 45 56 4 65 5 72 14 99
12

pivot partition
j

19 4 5 14 20 31 24 45 56 65 72 99

Not yet
sorted

Not yet
sorted

QuickSort

20 24 31 45 56 65 72 994 5 14 19

QuickSort

sorted

10/16/2013

3

In-Place Partitioning

 On the previous slide we just moved the items to
partition them

 But in fact this would require an extra array to copy
them into

 Developer of QuickSort came up with a better idea
 In place partitioning cleverly splits the data in place

13

In-Place Partitioning
14

Key issues
 How to choose a pivot?

 How to partition array
in place?

Partitioning in place
 Takes O(n) time (next

slide)

 Requires no extra space

Choosing pivot
 Ideal pivot: the median, since

it splits array in half
Computing median of

unsorted array is O(n), quite
complicated

Popular heuristics: Use
 first array value (not good)
 middle array value
 median of first, middle, last,

values GOOD!
Choose a random element

Change b[h..k]
from this:

to this by repeatedly
swapping array
elements:

In-Place Partitioning
15

x ?

h h+1 k

<= x x >= x

h j k

b

b

Do it one swap at
a time, keeping the
array looking like
this. At each step, swap
b[j+1] with something

<= x x ? >= x

h j t k

b

Start with: j= h; t= k;

In-Place Partitioning
16

<= x x ? >= x

h j t k

b

j= h; t= k;
while (j < t) {

if (b[j+1] <= x) {
Swap b[j+1] and b[j]; j= j+1;

} else {
Swap b[j+1] and b[t]; t= t-1;

}
}

Terminates when j = t,
so the “?” segment is
empty, so diagram
looks like result
diagram

Initially, with j = h
and t = k, this
diagram looks like
the start diagram

In-Place Partitioning

17

How can we move all the blues to the left of all the reds?
• Keep two indices, LEFT and RIGHT
• Initialize LEFT at start of array and RIGHT at end of array

Invariant: all elements to left of LEFT are blue
all elements to right of RIGHT are red

• Keep advancing indices until they pass, maintaining invariant

18

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap

10/16/2013

4

19

 Once indices cross, partitioning is done
 If you replace blue with ≤ p and red with ≥ p, this is

exactly what we need for QuickSort partitioning
 Notice that after partitioning, array is partially

sorted
 Recursive calls on partitioned subarrays will sort

subarrays
 No need to copy/move arrays, since we partitioned

in place

QuickSort procedure
20

/** Sort b[h..k]. */

public static void QS(int[] b, int h, int k) {

if (b[h..k] has < 2 elements) return;

int j= partition(b, h, k);

// We know b[h..j–1] <= b[j] <= b[j+1..k]

// So we need to sort b[h..j-1] and b[j+1..k]

QS(b, h, j-1);

QS(b, j+1, k);

}

Base case

Function does the
partition algorithm and
returns position j of
pivot

QuickSort versus MergeSort
21

/** Sort b[h..k] */

public static void QS

(int[] b, int h, int k) {

if (k – h < 1) return;

int j= partition(b, h, k);

QS(b, h, j-1);

QS(b, j+1, k);

}

/** Sort b[h..k] */

public static void MS

(int[] b, int h, int k) {

if (k – h < 1) return;

MS(b, h, (h+k)/2);

MS(b, (h+k)/2 + 1, k);

merge(b, h, (h+k)/2, k);

}

One processes the array then recurses.
One recurses then processes the array.

QuickSort Analysis
22

Runtime analysis (worst-case)

 Partition can produce this:

 Runtime recurrence: T(n) = T(n–1) + n

 Can be solved to show worst-case T(n) is O(n2)

 Space can be O(n) —max depth of recursion

Runtime analysis (expected-case)

 More complex recurrence

 Can be solved to show expected T(n) is O(n log n)

Improve constant factor by avoiding QuickSort on small sets

 Use InsertionSort (for example) for sets of size, say, ≤ 9

 Definition of small depends on language, machine, etc.

p > p

Sorting Algorithm Summary
23

We discussed
 InsertionSort
 SelectionSort
 MergeSort
 QuickSort

Other sorting algorithms
 HeapSort (will revisit)
 ShellSort (in text)
 BubbleSort (nice name)
 RadixSort
 BinSort
 CountingSort

Why so many? Do computer
scientists have some kind of sorting
fetish or what?

Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer, Hea
Expected O(n log n):

Mer, Hea, Qui
Best for nearly-sorted sets: Ins
No extra space: Ins, Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

Lower Bound for Comparison Sorting
24

Goal: Determine minimum
time required to sort n items

Note: we want worst-case,
not best-case time

Best-case doesn’t tell us
much. E.g. Insertion Sort
takes O(n) time on already-
sorted input

Want to know worst-case
time for best possible
algorithm

How can we prove anything
about the best possible
algorithm?

Want to find characteristics that
are common to all sorting
algorithms

Limit attention to comparison-
based algorithms and try to
count number of comparisons

10/16/2013

5

Comparison Trees
25

 Comparison-based algorithms make
decisions based on comparison of
data elements

 Gives a comparison tree

 If algorithm fails to terminate for
some input, comparison tree is infinite

 Height of comparison tree represents
worst-case number of comparisons for
that algorithm

 Can show: Any correct comparison-
based algorithm must make at least
n log n comparisons in the worst case

a[i] < a[j]
yesno

Lower Bound for Comparison Sorting
26

 Say we have a correct comparison-based algorithm

 Suppose we want to sort the elements in an array b[]

 Assume the elements of b[] are distinct

 Any permutation of the elements is initially possible

 When done, b[] is sorted

 But the algorithm could not have taken the same path in
the comparison tree on different input permutations

Lower Bound for Comparison Sorting
27

How many input permutations are possible? n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree

To have at least n! ~ 2n log n leaves, it must have height at
least n log n (since it is only binary branching, the number
of nodes at most doubles at every depth)

Therefore its longest path must be of length at least
n log n, and that it its worst-case running time

java.lang.Comparable<T> Interface
28

public int compareTo(T x);

Return a negative, zero, or positive value
negative if this is before x
0 if this.equals(x)

positive if this is after x

Many classes implement Comparable
String, Double, Integer, Character, Date, …

Class implements Comparable? Its method compareTo is
considered to define that class’s natural ordering

Comparison-based sorting methods should work with Comparable
for maximum generality

