

© CS 3310 – Functional Programming

My greatest regret from my time at Cornell is not taking this course

My ou will become awesome at programming

INFO 3300 – Data Driven Web Applications

Learn what I'm about to talk about

Learn how to learn new programming environments

CS 3810 – Theory of Computing

Prove that something cannot be parsed with Regular Expressions

CS 2800 – Discrete Structures

The math behind CS

Take More CS Courses

© CS 4410 - Operating Systems

© Concurrency, Scheduling, Filesystems

© CS 4700 - Foundations of A.I.

© Alpha-beta pruning, A*, Heuristics, ML

© CS 4120 - Compilers

© Compile a language to JVM bytecode

Take High-Level Courses

that you are Interested in

© Python

© Ideal for quick scripts

© Being able to understand something months after you wrote it without comments

© Perl

© Even better for quick scripts

© Will make you awesome at Regex

© Masochism

© Not being able to understand something 5 minutes after you wrote it

© PHP

© Don't

Learn New Languages


```
You start your program on the machine that will be the server
You also need to wave a magic want to "register" the service with the "Internet Information Service"

Or edit the bowels of your Apache configuration files

Go setup Tomcat

(Really, it's a choose your own poison situation)

Then on the client machine you import the service and can then write code to talk to it
```

```
    b Done using a client web-service proxy
    When executed, prints:
    Hello Service returned: <Hello My master!>

static void Main(string[] args)
{
    Hello Service Client proxy = new Hello Service Client();
    String result = proxy.SayHello("My master");
    Console.WriteLine("Hello Service returned: <" + result + ">");
}

Talking to the Web Service
```


- © One way to send and receive Java objects is through a process called serialization

 © This is a way of writing down an object in text format

 © The idea is we can serialize an object, put it into a message to a web service, and receive a serialized object as the result

 Java Serialization
- Se You can write an object oriented application now but instead of all the objects being on one machine & Put them any place you like!

 So An object becomes a bit like a web page

 So If you know how to find it, you can ask it to do stuff!

 But must pass arguments by "value", not "reference"

 The Magic of

 Distributed Computing
- & A "networked" application is one that talks to some resources on some other machine
 Ø Like a file or a web page
 Ø Network applications make no promises.
 & We're used to this "model" and know about its quirks
 Ø You often get timeouts
 Ø Sometimes your order is dropped, or goes in twice

 Networking vs. D.C.

Some applications (like medical ones) need stronger guarantees:

Need to know who the client is

And need to "trust" the service

May need to protect data against intruders

Might want to ensure that the service will be operational even if a crash occurs

These turn the problem into "distributed computing"

| Distributed Computing | Distributed | Distributed

Register to early work on databases

So Key concept is that either the operation is done to completion, or it fails and does nothing at all So A transaction, by definition, must be a atomic, a consistent, a isolated, and a durable Register to the idea of a "transaction"

Leads to the idea of a "transaction"

Atomicity requires that database modifications must follow an "all or nothing" rule

If one part of the transaction fails, the entire transaction fails and the database state is left unchanged

Transactions can fail for several kinds of reasons:

| Hardware failure A disk drive fails, preventing some of the transaction's database changes from taking effect.

| System failure: The user loses their connection to the application before providing all necessary information.

| Database failure: E.g., the database runs out of room to hold additional data.

| Application failure: The application attempts to post data that violates a rule that the database itself enforces, such as attempting to insert a duplicate value in a column.

| Atomicity | Atom

The consistency property ensures that any transaction the database performs will take it from one consistent state to another \$\tilde{\sigma}\$ A particular field is for holding integer numbers \$\tilde{\sigma}\$ Two options to maintain consistency when presented with a double value \$\tilde{\sigma}\$ reject attempts to put a double there \$\tilde{\sigma}\$ round the supplied values to the nearest whole number

Isolation refers to the requirement that other operations cannot access data that has been modified during a transaction that has not yet completed

Think of the threading question from Prelim 2

Isolation

№ The transaction subtracts 10 from A and adds 10 to B.
№ If it succeeds, it would be valid, because the data continues to satisfy the constraint.
№ However, assume that after removing 10 from A, the transaction is unable to modify B.
№ If the database retains A's new value, atomicity would be violated.
№ Atomicity requires that both parts of this transaction complete or neither.

Atomicity Failure

to A. Combined, there are four actions:

g subtract 10 from A
g add 10 to B.
g subtract 10 from B
g add 10 to A
to If these operations are performed in order, isolation is maintained, although Iz must wait.

g Consider what happens, if T₁ fails half-way through. The database eliminates I'₁ setfects, and I'₂ sees only valid data.
by By interleaving the transactions, the actual order of actions might be:

A - 10, B - 10, B + 10, B + 10, A + 10.

g Again consider what happens, if T₁ fails.

g T₁ still subtracts 10 from A. Now, T₂ adds 10 to A restoring it to its initial value. Now T₁ fails, I'₂ subtracts 10 from it. If T₂ is allowed to complete, B'₂ value will be to 10 to low, and A'₂ value will be unchanged, leaving an invalid database.

g This is known as a write-write failure, because two transactions attempted to write to the same data field.

