
IRM Enforcement of Java Stack Inspection∗

Úlfar Erlingsson
deCODE Genetics
Lyngháls 1, 110

Reykjavı́k, Iceland
ulfar@decode.is

Fred B. Schneider
Department of Computer Science

Cornell University
Ithaca, New York 14853
fbs@cs.cornell.edu

Abstract

Two implementations are given for Java’s stack-
inspection access-control policy. Each implementation is
obtained by generating an inlined reference monitor (IRM)
for a different formulation of the policy. Performance of the
implementations is evaluated, and one is found to be com-
petitive with Java’s less-flexible, JVM-resident implementa-
tion. The exercise illustrates the power of the IRM approach
for enforcing security policies.

1. Introduction

Java was designed to support construction of applica-
tions that import and execute untrusted code from across
a network. The language and run-time system enforce se-
curity guarantees for downloading a Java applet from one
host and executing it safely on another. In Sun’s Java im-
plementation [12, 14, 11], some of these security guar-
antees involve run-time checks by the JVM (Java Virtual
Machine), others involve load-time checks on the JVML
(Java Virtual Machine Language) bytecode files defining
JVM classes—the unit of JVM binary code and of Java ob-
ject hierarchies—and still others follow from the syntax of
JVML and the Java programming language.

The JVM run-time checks enforce access-control poli-
cies that associate access rights with the class that initi-
ates the access. The sandbox policy of early (pre Java 2)
JVM implementations distinguishes between code residing
locally and code obtained from across the network. The

∗Supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR
grant F49620-94-1-0198, Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Material Com-
mand, USAF, under agreement number F30602-99-1-0533, National Sci-
ence Foundation Grant 9703470, and a grant from Intel Corporation. The
views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of these organizations or the U.S.
Government.

more recent Java 2 stack inspection policy refines this. In
Java 2, whether an access is permitted can depend on the
current nesting of method invocations. Enforcement of the
stack inspection access-control policy therefore relies on in-
formation found on the JVM run-time call stack.

Changing which access-control policy is supported by
the JVM requires changing the JVM. Thus, programs ex-
pecting Java 2’s stack inspection policy to be enforced can-
not execute on earlier-generation JVM implementations.
On a JVM that enforces the stack inspection policy, ap-
plications requiring other access-control policies might be
ruled out altogether, might require awkward constructions 1,
or might be forced to employ their own application-level
custom enforcement mechanisms. Finally, such a JVM in-
cludes mechanisms that may or may not be needed for ex-
ecuting any given Java application. For embedded applica-
tions, where memory is at a premium, the size of the JVM
footprint is crucial; there is considerable incentive to omit
unused enforcement mechanisms.

This paper describes an alternative to putting access-
control enforcement in a run-time environment, such as the
JVM. We show how an in-lined reference monitor (IRM)
can be merged into Java applications to enforce security
policies like stack inspection. With the IRM approach, a
trusted rewriter instruments applications with checks that
cannot be circumvented and that cause execution to be mon-
itored for violations of a specified security policy.2 Two
IRM implementations of stack inspection are reported—
one is a reformulation of security passing style proposed
in [19, 20]; the other is new and exhibits performance that
is competitive with existing commercial JVM-resident im-
plementations.

1For example, certain access-control policies can be implemented with
stack inspection only by creating multiple copies of the same class in dif-
ferent code bases or by creating multiple instances of identical class load-
ers.

2The IRM approach is capable of enforcing EM policies [16], an ex-
tremely rich class that includes mandatory and discretionary access con-
trol, Chinese Wall, type enforcement, and the Clark-Wilson commercial
policy but that excludes certain information flow policies.

Figure 1. IRM approach to security policy enforcement.

Java 2’s stack inspection policy is a particularly challeng-
ing one to enforce with an IRM because state relevant to
policy enforcement (the JVM run-time call stack) is not di-
rectly accessible to Java applications. That we are able to
obtain a new implementation exhibiting competitive perfor-
mance reflects well on the practicality of the IRM approach.
And having an IRM implementation for stack inspection
means that Java 2 programs can be run on earlier genera-
tion JVM implementations, that variants of stack inspection
as well as entirely new security policies can be enforced on
Java programs without changing the JVM, and that unused
enforcement mechanisms need not bloat Java applications
or the JVM.

We proceed as follows. Section 2 briefly summa-
rizes our PoET/PSLang toolkit for synthesizing IRMs;
PoET/PSLang is a successor to our SASI tool [7]. Section 3
reviews Java 2’s stack inspection policy and the primitives
that implement this policy. An IRM version of the security-
passing style [19, 20] implementation of stack inspection is
described in Section 4; an IRM implementation for a new
way to support Java 2’s stack inspection policy is given in
Section 5. Finally, Section 6 concludes with some remarks
about the IRM approach and about limitations we discov-
ered in Java’s stack inspection policy.

2. Inlined Reference Monitors

For a reference monitor [2] to enforce a security policy,
(i) it must mediate all events relevant to the policy being en-
forced, (ii) its integrity must be protected from subversion
by applications, and (iii) its presence must be transparent
to applications [15]. Address-space isolation has tradition-
ally been employed for ensuring the integrity of reference
monitors, but other approaches are also feasible.

With an in-lined reference monitor, a load-time, trusted
rewriter merges checking code into the application itself
and uses program analysis and program rewriting to protect
the integrity of those checks. The application is thus trans-
formed by the rewriter into a secured application, which
is guaranteed not to take steps violating the security policy
being enforced. See Figure 1.

Specifying an IRM involves defining

• security events, the policy-relevant operations that
must be mediated by the reference monitor;

• security state, information stored about earlier security
events that is used to determine which security events
can be allowed to proceed; and

• security updates, program fragments that are executed
in response to security events and that update the secu-
rity state, signal security violations, and/or take other
remedial action (e.g. block execution).

Policy Enforcement Toolkit (PoET) [6] implements
IRMs for JVML applications. A primary concern in the
design of PoET was the trusted computing base. PoET
comprises approximately 17,500 lines of Java source code
and thus increases the size of the trusted computing base
by that amount. Although the PoET rewriter does local
optimizations on inserted code—to delete (some) superflu-
ous enforcement checks—it does not attempt global pro-
gram analysis because we feared further increases to the
size and complexity of the trusted computing base. In ad-
dition, PoET works at the level of JVML (and not the Java
programming language).3 Transforming Java programs in-
stead of JVML programs would make a Java compiler part
of the trusted computing base, an unwise choice given the
size and complexity of Java compilers. Moreover, by choos-
ing to transform JVML programs, we do not require that
source code for an application be available at a site for a se-
curity policy to be imposed by the site on that application.

Note that the PoET rewriter need not be run on the same
computer as the JVM or even as the Java compiler. Thus,
PoET contributes to the size of the trusted computing base
without increasing the size of the run-time environment
used to execute Java applications. In most cases, PoET will
run on the same computer as the JVM, yet it is not diffi-
cult to imagine mobile-code and other networked settings

3Currently, PoET does not process Java native methods—code written
in native machine language—and this restricts what policies can be en-
forced by excluding some security events. However, this is not a limitation
of the IRM approach in general, as demonstrated by x86 SASI [7], which
implements IRMs on x86 machine-language applications.

IMPORT LIBRARY Lock;
ADD SECURITY STATE \{

int openWindows = 0;
Object lock = Lock.create();

\}
ON EVENT begin method
WHEN Event.fullMethodNameIs("void java.awt.Window.show()")
PERFORM SECURITY UPDATE \{

Lock.acquire(lock);
if(openWindows = 10) \{

HALT["Too many open GUI windows"];
\}
openWindows = openWindows + 1;
Lock.release(lock);

\}
ON EVENT begin method
WHEN Event.fullMethodNameIs("void java.awt.Window.dispose()")
PERFORM SECURITY UPDATE \{

Lock.acquire(lock);
openWindows = openWindows - 1;
Lock.release(lock);

\}

Figure 2. PSLang security policy that allows at most 10 open windows.

where security policies are added to an application before
that application is distributed to other sites for execution.

The integrity of a PoET-inserted IRM’s security state and
security updates is protected by JVML type-safety guaran-
tees, since the JVML type system prohibits access to code
and data not in the classes originally comprising an appli-
cation. JVML type-safety also means that JVML applica-
tions are unaffected by the presence of checking code that
PoET adds to create an IRM. This is because JVML type-
safety prevents code from being viewed as data, so code in-
serted by the PoET rewriter cannot be directly detected by
the application that was modified. In addition, JVML type-
safety prevents a Java application from mentioning names
and types not in that application’s original namespace; the
PoET rewriter chooses the names and types for any check-
ing code it adds accordingly.4

Security policies for PoET are specified using Policy
Specification Language (PSLang), an event-oriented, im-
perative language with Java-inspired syntax. PSLang is a
small subset of Java so that the PSLang compiler could be
small. In PSLang security policies, any JVM event that
could occur during execution of the original application—
from method calls to arithmetic operations—can be identi-
fied as a security event and, therefore, will trigger execu-

4The presence of an IRM for certain policies cannot be completely hid-
den. Reflection and the measurement of execution timing can allow a Java
application to detect added code (but does not compromise security en-
forcement).

tion of an associated security update. PSLang is expressive
enough to specify the EM policies of [16]. 5

To illustrate the syntax of PSLang, Figure 2 gives a pol-
icy to prevent Java applications from opening more than
10 Java windows. The security state is defined in the ADD
SECURITY STATE block at the start of the specification.
It consists of an integer variable (openWindows) and a
mutual exclusion lock (lock). Variable openWindows
counts the number of open windows; lock is used to pro-
tect openWindows from concurrent access. Security up-
dates are introduced by PERFORM SECURITY UPDATE
(two are in Figure 2), and security events are identified by
ON EVENT ... WHEN tags. The two security events in
the policy of Figure 2 specify that the IRM executes security
updates prior to method invocations for opening and closing
Java windows. Whenever the application attempts to open
a window, the JVM executing the application is terminated
(because HALT is invoked) if 10 windows have already been
opened (i.e., openWindows = 10); otherwise, openWin-
dows is incremented. And whenever a window is closed,
openWindows is decremented.

5To be precise, any security policy that can be specified using a secu-
rity automaton involving transition predicates that are JVM events can be
formulated in PSLang.

Figure 3. Three Protection Domains.

3. Review of Java 2’s Stack Inspection Policy

Java 2’s stack inspection access-control policy is based
on policy files which associate permissions with protection
domains. The policy file read when the JVM starts is what
defines the access-control policy for applications then exe-
cuted by that JVM, as follows.

Protection domains. Each application initially is a se-
quence of bytes stored outside the JVM. The bytes
are fetched by a class loader and then executed by the
JVM. Prior to execution, the bytes are assigned to a
protection domain in accordance with the source of
the bytes (a network address or a file name) and any
attached cryptographic signature.6

Permissions. Each protection domain implies a set of per-
missions. This set includes all those permissions as-
sociated with the protection domain by the policy file,
as well as other implied permissions. The definition
of a permission—a class—states what permissions it
implies by implementing an implies method.

As an example, Figure 3 depicts three protection do-
mains: Untrusted Applet, GUI Library, and File System.
Permissions associated with each domain appear in the box
below the name of the protection domain; psuedo-code as-
sociated with that domain appears below the permissions.
Notice that file access permissions are given in the figure
using patterns rather than complete file names—the im-
plies method would decode those patterns to generate
permissions for actual files in the expected way.

6The Java class loader used to fetch those bytes can also be involved
in determining the protection domain of those bytes [13]. Since new class
loaders can be created at runtime, protection domains can be created dy-
namically, thereby helping to overcome the static nature of policy files.

For a permission P , invoking the
checkPermission(P) method of Java 2 throws a se-
curity exception if access should not be allowed to proceed;
it otherwise has no visible effect. Whether a security excep-
tion is thrown depends on the protection domains assigned
to the methods from which control has not yet returned—
methods having frames on the JVM call stack when
checkPermission(P) is invoked. Specifically, when
checkPermission(P) is invoked, the JVM call stack is
traversed from top to bottom (i.e., starting with the frame
for the method containing the checkPermission(P)
invocation) until either the entire stack is traversed or an
invocation is found within the scope of a doPrivileged
block. In that traversal, the stack frames encountered are
checked to make sure their associated protection domains
imply permission P ; if some frame doesn’t, a security
exception is thrown.

Observe that doPrivileged supports a form of rights
amplification. Without doPrivileged or some equiva-
lent, it would be impossible to invoke methods that require
permissions not already held by the invoker. Such rights
amplification is crucial, for example, when untrusted code
invokes a system routine. A system routine is trusted to
perform adequate checks before exercising the power that
comes with the more powerful permissions in its associ-
ated protection domain; it should also be trusted to invoke
only methods that are similarly prudent. So, a construct like
doPrivileged that allows an invoked method to exercise
permissions beyond those of its invoker is both sensible and
useful.

The psuedo-code in Figure 3 illustrates how
doPrivileged is used. display directly invokes
the load method of File System and invokes the use
plain font method of GUI Library. Also note that use
plain font invokes load—loading a font may require

Method call/return: A → B
At start of B, look up protection domain PB for B’s
code and push PB on the thread-local domain-
Stack. At return from B (either normally or by
a thrown exception), pop domainStack, remov-
ing PB .

doPrivileged {S}
Push a distinguished token doPriv on domain-
Stack, at the beginning of the doPrivileged,
and pop the token off at the end (whether an ex-
ception was thrown or not).

checkPermission(P)
Scan domainStack from top to bottom (without
modifying it), and look at each protection domain
p. Throw a security exception if p does not imply
P , but accept if p = doPriv or the bottom of do-
mainStack is reached.

Create thread: T
Set the domainStack of T to contain a copy of
the contents of the domainStack of its parent
thread.

Table 1. IRMSPS implements security-passing style.

loading a file that contains bit maps for the font. We then
have:

• In invoking load(’thesis.txt’), the
checkPermission will throw a security excep-
tion if protection domains File System (the frame at
the top of the stack) and Untrusted Applet (the next
and bottom frame on the stack) do not each imply the
needed permissions for reading that file. They do if
thesis.txt resides in /home/ue.

• In invoking load(’Courier’) while executing
in use plain font, the checkPermission will
throw a security exception if protection domains File
System (the frame at the top of the stack) and GUI
Library (the next frame on the stack) do not each im-
ply the needed permissions for reading that file. They
do if Courier resides in /fonts. Untrusted Ap-
plet is not checked for permissions, because the invo-
cation of load in GUI Library is within the scope of
a doPrivileged.

Java’s stack inspection policy also handles dynamic cre-
ation of threads. When a new thread T is created, T is given
a copy of the existing run-time call stack to extend. The
success of subsequently evaluating checkPermission in
thread T thus involves permissions associated with the call
stack (or some other representation of the permissions im-
plied by the call stack) when T is created.

4. A Security-Passing Style IRM

The first work on modifying JVML programs to enforce
stack inspection is described in [19, 20]. There, an addi-
tional variable is introduced to replicate information from
the JVM run-time call stack. This variable is changed upon
invoking or returning from a method call as well as upon
entering or exiting the scope of a doPrivileged block; the

variable is scanned when checkPermission is evaluated.
The resulting scheme is called security-passing style (SPS)
because the new variable is passed to method invocations as
an additional argument.

SPS is an example of the IRM approach, so it will
be no surprise that we were able to use PoET and build
IRMSPS , an implementation of SPS. The security updates
that IRMSPS associates with each security event—method
call and return, checkPermission, doPrivileged, and
thread creation—are sketched in Table 1; the actual PSLang
formulation requires less than three pages and appears as
Appendix A of [8].

In the PSLang that specifies IRMSPS , variable do-
mainStack replicates policy-relevant information from
the JVM run-time call stack; this variable is local to each
thread (and is equivalent to the additional explicit argument
to method invocations employed in [19, 20]). It is worth
noting exactly how IRMSPS handles security updates as-
sociated with a method call from A to B. Permissions for
B could be added to security state domainStack either
inside method A or inside method B. But performing the
update inside method A turns out to be less desirable in part
because when B is a virtual method (the Java equivalent of
a function pointer), a dynamic lookup would be required
to determine its permissions. Therefore, IRMSPS does the
security update inside method B.

Performance Overhead

In order to understand the performance of stack inspec-
tion implementations, we must know the frequency and
cost of relevant security events in actual applications. We
therefore measured four applications: the Jigsaw 2.01 web
server [3], Sun’s javac Java 1.1 compiler [12], the tar
utility [5], and an MPEG video player [1]. All were run

Method
calls

doPrivileged
checkPermission

count avg checked
New

threads
Jigsaw 2,476,731 1,002 5,333 18.7 71
javac 1,456,970 0 1,067 12.4 0
tar 19,580 0 6,509 8.6 0
MPEG 35.997.662 101 205 5.7 201

(a) Frequency of stack inspection primitives.

Method call doPrivileged checkPermission New thread
1.00µs 1.66µs 7.7µs 6.5µs

(b) Benchmarked cost of IRMSPS primitives (at stack depth 10).

JVM IRMSPS

Jigsaw 6.2% 20.1%
javac 2.9% 46.2%
tar 10.1% 3.0%
MPEG 0.9% 72.5%

(c) Overhead of JVM-resident and IRMSPS implementations.

Table 2. Assessing stack inspection performance.

using modern JVMs7 with garbage collection disabled on a
300Mhz Pentium II running Windows 98. Since quantify-
ing access-control overhead was of interest, the first three
benchmark applications used the same set of 500 small syn-
thetic Java source files as their input.

Table 2(a) shows how many times the various stack in-
spection primitives were invoked in the benchmarked appli-
cations. The cost of doPrivileged, checkPermission,
and thread creation can be relative to the size of the JVM
call stack, and—because checkPermission is dominant—
we also report the average number of accessed stack frames
(“avg checked”) for that operation. So that the numbers
are less dependent on irrelevant implementation details,
stack inspection primitives used in the construction of per-
mission objects have not been counted. For instance, not
counted are the doPrivileged invocations for creating
each java.io.FilePermission object in Sun’s im-
plementation.

Table 2(b) shows the overhead, in microseconds, for the
IRMSPS stack inspection primitives. The values shown are
averages from a synthetic benchmark of the primitives. The
primitives in the last three columns were benchmarked us-
ing a stack depth of 10—each operation accessed 10 stack
frames.

Table 2(c) compares the run-time overhead of Sun’s

7For JDK 1.1.7, we used Symantec Java! JustInTime Compiler Version
3.10.107(i); for JDK 1.2, we used Sun’s distribution that employs Syman-
tec Java! JustInTime Compiler Version 3.00.078(x).

JVM-resident implementation of stack inspection and
IRMSPS . The column labeled JVM gives the percent-
age overhead between running the application on Java 2’s
JVM with stack inspection enabled versus without stack in-
spection enabled; the column labeled IRMSPS gives the
percentage overhead between running the application with
IRMSPS on Java 1.18 versus without any IRM.

The measurements in Table 2 do not include the cost of
constructing permission objects or of executing their im-
plies methods. This better quantifies the relative differ-
ences in overhead between stack inspection implementa-
tions. The numbers shown are based on the average exe-
cution time for 15 runs of the synthetic benchmarks and the
applications. Percentages in Table 2(c) relate two of these
averages. For each average we computed, the standard de-
viation was found to be small enough to be ignored in inter-
preting the numbers.

The JVM-resident implementation is considerably
cheaper for Jigsaw, javac, and MPEG. This is not sur-
prising because of the per method call cost of IRMSPS

and the large number of method calls each of these appli-
cations makes. However, when an application has many
permission checks relative to the number of method calls,
IRMSPS may exhibit less overhead than the JVM-resident
implementation. This is because IRMSPS can amortize

8We employed Java 1.1’s JVM to measure the overhead of IRMSPS

because the stack inspection implementation already present in Java 2’s
JVM would otherwise distort the measurements.

Method call/return: A → B
Nothing.

doPrivileged {S}
At the beginning of the doPrivileged push the
current JVM call stack frame number onto privS-
tack; at the end pop it off (whether an exception
was thrown or not).

checkPermission(P)
Let bottom be the privileged stack frame number
on top of privStack, or 0 if there is none. Scan
the current JVM call stack from top to bottom and
find the protection domain p for each stack frame—
reject if ever p does not imply P . If there was no
privileged stack frame, likewise scan the ances-
tralStack.

Create thread: T
Let the ancestralStack of T be either a copy
of the ancestralStack of its parent thread,
with the current JVM call stack pushed on top,
or—if there’s a privileged stack frame number on
privStack—the top portion of the current JVM
call stack up to that privileged frame.

Table 3. IRMLazy uses the JVM call stack.

the cost of creating domainStack over a large number of
checkPermission’s and each checkPermission is likely
to be as cheap, or cheaper, under IRMSPS . The results for
tar illustrate this benefit.

An Improved SPS Implementation Scheme

The overhead of an SPS stack inspection implementa-
tion would be improved if the security state (i.e., domain-
Stack) were not updated on each method call. In fact,
updates need to be made only when a method call crosses
protection domains—method calls within the same protec-
tion domain repeatedly push the same permission onto do-
mainStack, and checkPermission is unaffected by re-
placing sequences of identical stack frames with a single
frame.

The implementation of [19, 20] exploits this insight.
The implementation comprises 12,800 lines of Java code,
of which 1700 lines implement an analysis to determine
whether invoked methods are in the same or different pro-
tection domains as the invoker and 6900 lines are produced
by JOIE, the generic JVML rewriter [4]. With these op-
timizations, [19, 20] reports overall security enforcement
overheads of between 13% and 17% of total execution
time—still relatively high when compared to the overheads
on the same applications run under the JVM-resident im-
plementation stack inspection. Adding this optimization to
IRMSPS did not seem worthwhile, given the performance
gains we achieve in other ways with the IRM implementa-
tion of the next section.

5. A New IRM Stack Inspection Implementa-
tion

Sun’s implementation of stack inspection profits from
having direct access to the JVM call stack, because no over-

head is then incurred at method calls in order to keep track
of nested invocations for subsequent checkPermission
evaluation. Since method calls are the common case, the
performance advantages of this design should be obvious.

In order to specify such a scheme in PSLang, some facil-
ity is needed for accessing the JVM run-time call stack. For-
tunately, such can be found in Java. First, Java provides an
interface so that exceptions can print a textual description of
the JVM call stack when they are thrown; second, the Java
SecurityManager contains a protected method get-
ClassContext that returns a copy of the JVM call stack
as an array of Class objects, each a unique identifier for
the code at that JVM call stack frame. The PoET runtime
makes this latter interface accessible to PSLang specifica-
tions (as part of PoET’s System library) by extending the
SecurityManager.

Table 3 sketches security events and updates for
IRMLazy , an IRM stack inspection implementation that
uses the JVM call stack. (The actual five page PSLang
formulation appears as Appendix B of [8].) Notice how
work has been moved from method call/return to the imple-
mentation of doPrivileged, checkPermission, and new
thread creation (which all must make a copy of the call stack
when they are invoked). doPrivileged pushes the frame
number for the stack frame at the top of the current JVM
call stack onto a separate thread-local variable, privS-
tack. This frame number then serves to bound the seg-
ment of the JVM call stack that must be traversed in eval-
uating checkPermission—stack frames appearing lower
on that call stack are not checked. For each thread, the rel-
evant stack frames of parent threads are stored in thread-
local variable ancestralStack, since this information
cannot be derived from the current JVM call stack and it is
needed in evaluating any checkPermission that does not
terminate early by reaching a doPrivileged frame.

Table 4(a) shows the cost of the stack inspection primi-

Method call doPrivileged checkPermission New thread
0µs 23.4µs 22.4µs 29.8µs

(a) Benchmarked cost of IRMLazy primitives (at stack depth 10).

JVM IRMSPS IRMLazy

Jigsaw 6.2% 20.1% 6.4%
javac 2.9% 46.2% 2.0%
tar 10.1% 3.0% 5.4%
MPEG 0.9% 72.5% 0.4%

(b) Overhead of JVM-resident, IRMSPS , and IRMLazy implementations.

Table 4. Assessing the IRMLazy stack inspection implementation.

tives with IRMLazy. As with Table 2(b), reported measure-
ments are averages from a synthetic benchmark that repeat-
edly performed the subject operation.

Notice that, except for method calls, the measured costs
for each stack inspection primitive in Table 4(a) are higher
than the IRMSPS costs given in Table 2(b). These higher
costs arise because the entire stack is now being copied by
the implementations of all but the method call/return stack
inspection primitives. Even so, for our benchmark applica-
tions, IRMLazy exhibits overall performance that is supe-
rior to IRMSPS and that is competitive with Sun’s JVM-
resident implementation. This is seen in Table 4(b), and it
is a consequence of method call/return invocations dominat-
ing performance of our benchmarks. Where IRMLazy per-
forms better than the JVM-resident implementation, it is be-
cause of optimizations in our PSLang specification, which
do a better job of eliminating redundant work in permission
checking.9

6. Concluding Remarks

The idea of separating mechanism from the policy that
directs this mechanism is advocated often. Java 2’s sup-
port for the stack inspection access-control policy involves
a mechanism (in the JVM) and the flexibility to direct that
mechanism through policy files, protection domains, and
permission classes (with their implies methods). Our
IRM realizations of stack inspection actually draw a some-
what different line between policy and mechanism. With
no JVM-resident mechanism, there is considerable flexibil-
ity about what policies can be enforced using the IRM ap-
proach and about when that choice of policy must be made.

This flexibility allows enforcement of policies that al-
ter or extend what the JVM implements today. One might
now contemplate remedying the various deficiencies in the
Java 2 stack inspection access-control policy, allowing

9Similar optimizations are done in IRMSPS .

• changing protection domains, permissions, and the
implies method after execution of an application is
commenced, enabling straightforward creation of new
protection domains as execution proceeds;

• the coupling between protection domains and bytecode
origin to be refined so that, for example, an applica-
tion’s state is used in determining the protection do-
main for code; and

• the operation of doPrivileged to be extended so that
only a subset of the privileges in a protection domain
are amplified in a block of code.

It now even becomes possible to enforce different secu-
rity policies on different Java applications, raising ques-
tions about detecting and resolving incompatibilities be-
tween those policies. However, these questions about policy
composition are independent of whether or not the IRM ap-
proach is being used to enforce policies.

The IRM approach is flexible because it allows security
events and security updates to be associated with any ap-
plication event. This degree of flexibility can be only ap-
proximated by wrapping security enforcement code around
an interface, as done by Naccio [9] (for method calls)
and Generic Software Wrappers [10] (for system calls).
Software-based fault isolation (SFI) [18] enforces a mem-
ory protection policy by object-code editing, and recent
work on distributed virtual machines also is concerned with
enforcing security policies by code rewriting [17]. Clearly,
the set of enforceable security policies is restricted if, as in
this related work, only some—not all—potential security
events can be monitored, only some security state main-
tained, and only some types of security updates supported.

Flexibility is a double-edged sword. The IRM approach
is not only flexible enough to implement Java 2’s stack in-
spection (in multiple ways!) and to implement a host of vari-
ants that address apparent limitations in the policy, but it is

also flexible enough to allow policies to be defined that have
unanticipated consequences or vulnerabilities. We have no
way to guarantee that our PSLang formulations of stack in-
spection are indeed the policy supported by Sun’s distribu-
tion. To get such assurance, we would need a formal spec-
ification of Sun’s stack inspection implementation and we
would need a logic for PSLang specifications. Neither ex-
ists. But PSLang could easily be given a formal semantics in
terms of security automata, and then it would not be difficult
to reason about and/or simulate PSLang policies in order to
gain confidence that they describe what is intended.

Even without a logic for reasoning about PSLang spec-
ifications, the exercise of formulating stack inspection in
PSLang, a formal language, did prove enlightening. Writ-
ing the PSLang security updates forced us to ask questions
about what really happens when security events occur. Sur-
prising things about the semantics of stack inspection came
to light:

• If a new thread is created from within a
doPrivileged block then that thread will continue
to enjoy amplified privileges—even though its code
might not be within the scope of a doPrivileged
block and even after its creator has exited from within
the doPrivileged. This is because the new thread
starts execution with a copy of its creator’s call-stack
(whose top frame is marked as being within the scope
of a doPrivileged).

• When a class B extends some class A but does not
override A’s implementation of a method foo(), then
the protection domain for A (and not B) will always
be used by checkPermission for foo’s stack frame.
Because B can extend A in ways that may affect the se-
mantics of foo, (such as by overriding other methods),
one might argue that the wrong protection domain is
being consulted.10

Both of these “features” of stack inspection will become
apparent to attentive readers of the PSLang formulations
that appear in the appendices of [8]. This is not to say that
there aren’t also surprises in our PSLang formulations or
there aren’t aspects of the Java 2 behavior that we missed in
constructing these formulations. But having—in just a few
pages—a complete and rigorous description of the policy
being enforced seems like a necessary condition for under-
standing that policy.

Acknowledgments

Discussions with Li Gong have been helpful as this
work has evolved. We also thank Andrew Myers, Andrew
Bernard, Michal Cierniak, Robert Grimm, and the program
committee for comments on earlier drafts of this paper.

10The rationale for the choice that was made is given in [11, §3.11.3].

References

[1] Anders, J. Java MPEG Player. Fakultät für Infor-
matik, Technische Universität Chemnitz, Chemnitz,
Germany, http://rnvs.informatik.tu-
chemnitz.de/.

[2] Anderson, J.P. Computer security technology plan-
ning study. Technical Report ESD-TR-73-51, U.S. Air
Force Electronic Systems Division, Deputy for Com-
mand and Management Systems, HQ Electronic Sys-
tems Division (AFSC), Bedford, Massachusetts, Oc-
tober 1972, volume 2, 58–69.

[3] Baird-Smith, A. Jigsaw: An Object Oriented
Server. W3C Note, World Wide Web Con-
sortium, MIT Laboratory for Computer Sci-
ence, Cambridge, Massachusetts, June 1996,
http://www.w3.org/Jigsaw/.

[4] Cohen, G., J. Chase, and D. Kaminsky. Automatic
program transformation with JOIE. Proceedings of
1998 Usenix Annual Technical Symposium, (New Or-
leans, Louisiana, June 1998), 167–178.

[5] Endres, T. Java Tar Package. ICE En-
gineering, Inc., Lake Linden, Michigan,
http://www.ice.com/java/tar/.

[6] Erlingsson, Ú. The Inlined Reference Monitor Ap-
proach to Security Policy Enforcement, Ph.D. thesis,
Cornell University, Ithaca, New York, 2000.

[7] Erlingsson, Ú. and F.B. Schneider. SASI Enforcement
of Security Policies: A Retrospective. Proceedings
1999 New Security Paradigms Workshop (Caledon
Hills, Canada, September 1999), ACM Press, New
York.

[8] Erlingsson, Ú. and F.B. Schneider. IRM Enforcement
of Java Stack Inspection. Technical Report TR2000-
1786, Computer Science Department, Cornell Univer-
sity, Ithaca, New York, February 2000, http://cs-
tr.cs.cornell.edu:80/Dienst/UI/1.0/
Display/ncstrl.cornell/TR2000-1786.

[9] Evans, D. and A. Twyman. Policy-directed code
safety. Proceedings IEEE Symposium on Security and
Privacy (Oakland, California, May 1999), IEEE Com-
puter Society, California, 32–45.

[10] Fraser, T., L. Badger, M. Feldman. Hardening COTS
Software with Generic Software Wrappers. Proceed-
ings IEEE Symposium on Security and Privacy (Oak-
land, California, May 1999), IEEE Computer Society,
California, 2–16.

[11] Gong, L. Inside Java 2 Platform Security: Archi-
tecture, API Design, and Implementation, Addison-
Wesley, Menlo Park, California, 1999.

[12] Gosling, J., B. Joy, and G. Steele. The Java Language
Specification, Addison-Wesley, Menlo Park, Califor-
nia, 1996.

[13] Liang, S. and G. Bracha. Dynamic Class Loading
in the Java Virtual Machine. Proceedings of 1998
ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (Vancouver,
Canada, October 1998), SIGPLAN Notices 33(10),
36–44.

[14] Lindholm, T. and F. Yellin. The Java Virtual Machine
Specification, 2nd edition. Addison-Wesley, Menlo
Park, California, 1999.

[15] Saltzer J.H. and M.D. Schroeder. The Protection of In-
formation in Computer Systems. Proceedings of the
IEEE 63, 9 (Sept. 1975), 1278–1308.

[16] Schneider, F.B. Enforceable Security Policies. ACM
Transactions on Information and System Security 2, 4
(February 2000). To appear.

[17] Sirer, E.G., R. Grimm, A.J. Gregory, B.N. Bershad.
Design and Implementation of a Distributed Virtual
Machine for Networked Computers. Proceedings of
the 17th ACM Symposium on Operating Systems Prin-
ciples (Kiawah Island, SC, Dec. 1999), ACM, 202–
216.

[18] Wahbe, R., S. Lucco, T.E. Anderson, and S.L. Gra-
ham. Efficient Software-Based Fault Isolation. Oper-
ating System Review, 27(5), ACM Press, 1993.

[19] Wallach, D.S. A New Approach to Mobile Code Se-
curity, Ph.D. thesis, Princeton University, New Jersey,
January 1999.

[20] Wallach, D.S. and E.W. Felten. Understanding Java
Stack Inspection. Proceedings 1998 IEEE Symposium
on Security and Privacy (Oakland, California, May
1998), IEEE Computer Society, California, 52–63.

