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A well-known scientist (some say it was Bertrand Russell) once gave a 

public lecture on astronomy. He described how the earth orbits around the 

sun and how the sun, in turn, orbits around the center of a vast collection of 

stars called our galaxy. 

At the end of the lecture, a little old lady at the back of the room got up and 

said: "What you have told us is rubbish. The world is really a flat plate 

supported on the back of a giant tortoise." The scientist gave a superior 

smile before replying, "What is the tortoise standing on?" "You're very 

clever, young man, very clever", said the old lady. "But it's turtles all the 

way down!”



Overview: Reasoning about programs
2

 Our broad problem: code is unlikely to be correct if 

we don’t have good reasons for believing it works

We need clear problem statements

 And then a rigorous way to convince ourselves that 

what we wrote solves the problem

 But reasoning about programs can be hard

 Especially with recursion, concurrency

 Today focus on recursion



Overview: Reasoning about programs
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 Recursion

 A programming strategy that solves a problem by reducing it to 
simpler or smaller instance(s) of the same problem

 Induction

 A mathematical strategy for proving statements about natural 
numbers 0,1,2,... (or more generally, about inductively defined 
objects)

 They are very closely related

 Induction can be used to establish the correctness and 
complexity of programs



Defining Functions
4

 It is often useful to describe a function in different ways

 Let  S : int → int be the function where S(n) is the sum of 
the integers from 0 to n.  For example,

S(0) = 0            S(3) = 0+1+2+3 = 6

 Definition: iterative form
 S(n) = 0+1+ … + n

= Σ i

 Another characterization: closed form
 S(n) = n(n+1)/2

n

i=0



Sum of Squares
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 A more complex example

 Let SQ : int → int be the function that gives the sum of the 
squares of integers from 0 to n:

SQ(0) = 0    

SQ(3) = 02 + 12 + 22 + 32 = 14

 Definition (iterative form):  

SQ(n) = 02 + 12 + … + n2

 Is there an equivalent closed-form expression?



Closed-Form Expression for SQ(n)
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 Sum of integers between 0 through n was n(n+1)/2 which is 
a quadratic in n (that is, O(n2))

 Inspired guess: perhaps sum of squares of 
integers between 0 through n is a cubic in n

 Conjecture: SQ(n) = an3+bn2+cn+d 
where a, b, c, d are unknown coefficients

 How can we find the values of the four unknowns?

 Idea: Use any 4 values of n to generate 4 linear equations, and 
then solve



Finding Coefficients
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 Use  n = 0, 1, 2, 3

 SQ(0) = 0 = a·0  + b·0 + c·0 + d

 SQ(1) =   1 = a·1  + b·1 + c·1 + d

 SQ(2) =  5 = a·8  + b·4 + c·2 + d

 SQ(3) = 14 = a·27 + b·9 + c·3 + d

 Solve these 4 equations to get
 a = 1/3      b = 1/2      c = 1/6      d = 0

SQ(n) = 02+12+…+n2 = an3+bn2+cn+d



Is the Formula Correct?
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 This suggests

SQ(n) = 02 + 12 + … + n2

= n3/3 + n2/2 + n/6

= n(n+1)(2n+1)/6

 Question: Is this closed-form solution true for all n?

 Remember, we only used n = 0,1,2,3 to determine these 
coefficients

 We do not know that the closed-form expression is valid 
for other values of n



One Approach
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 Try a few other values of n to see if they work.

 Try n = 5:     SQ(n) = 0+1+4+9+16+25 = 55

 Closed-form expression: 5·6·11/6 = 55

 Works!

 Try some more values…

 We can never prove validity of the closed-form solution 
for all values of n this way, since there are an infinite 
number of values of n



A Recursive Definition
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 To solve this problem, let’s express SQ(n) in a different way:

 SQ(n) = 02 + 12 + … + (n-1)2 + n2

 The part in the box is just SQ(n-1) + n2

 This leads to the following recursive definition

 SQ(0) = 0

 SQ(n) = SQ(n-1) + n2,  n > 0

 Thus, 

 SQ(4) = SQ(3) + 42 = SQ(2) + 32 + 42 = SQ(1) + 22 + 32 + 
42 = SQ(0) + 12 + 22 + 32 + 42 = 0 + 12 + 22 + 32 + 42

Base Case

Recursive Case



Are These Two Functions Equal?
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 SQr (r = recursive)

SQr(0) = 0

SQr(n) = SQr(n-1) + n2,   n > 0

 SQc (c = closed-form)

SQc(n) = n(n+1)(2n+1)/6



Induction over Integers
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 To prove that some property P(n) holds for all integers 
n ≥ 0,

1. Basis: Show that P(0) is true

2. Induction Step: Assuming that P(k) is true for an 
unspecified integer k, show that P(k+1) is true

 Conclusion: Because we could have picked any k, we 
conclude that P(n) holds for all integers n ≥ 0



Dominos
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 Assume equally spaced dominos, and assume that spacing 
between dominos is less than domino length

 How would you argue that all dominos would fall?

 Dumb argument:
 Domino 0 falls because we push it over

 Domino 0 hits domino 1, therefore domino 1 falls

 Domino 1 hits domino 2, therefore domino 2 falls

 Domino 2 hits domino 3, therefore domino 3 falls

 ...

 Is there a more compact argument we can make?

0 1 2 3 54



Better Argument
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 Argument:

 Domino 0 falls because we push it over (Base Case or Basis)

 Assume that domino k falls over (Induction Hypothesis)

 Because domino k’s length is larger than inter-domino spacing, it 
will knock over domino k+1 (Inductive Step)

 Because we could have picked any domino to be the kth one, we 
conclude that all dominos will fall over (Conclusion)

 This is an inductive argument

 This version is called weak induction

 There is also strong induction (later)

 Not only is this argument more compact, it works for an 
arbitrary number of dominoes!



SQr(n) = SQc(n) for all n?
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 Define P(n) as SQr(n)= SQc(n)

 Prove P(0)

 Assume P(k) for unspecified k, and then prove P(k+1) 
under this assumption

P(1) P(2) P(k) P(k+1)



Proof (by Induction)
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 Recall: SQr(0) = 0
SQr(n) = SQr(n-1) + n2,   n > 0

SQc(n) = n(n+1)(2n+1)/6

 Let  P(n) be the proposition that SQr(n) = SQc(n)

 Basis: P(0) holds because SQr(0) = 0 and SQc(0) = 0 by definition

 Induction Hypothesis: Assume SQr(k) = SQc(k)

 Inductive Step:
SQr(k+1) = SQr(k) + (k+1)2 by definition of SQr(k+1) = 
SQc(k) + (k+1)2 by the Induction Hypothesis

= k(k+1)(2k+1)/6 + (k+1)2 by definition of SQc(k)
= (k+1)(k+2)(2k+3)/6 algebra
= SQc(k+1) by definition of SQc(k+1)

 Conclusion: SQr(n) = SQc(n) for all n  0



Another Example
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 Prove that 0+1+...+n = n(n+1)/2

 Basis: Obviously holds for n = 0

 Induction Hypothesis: Assume 0+1+…+k = k(k+1)/2

 Inductive Step:

0+1+…+(k+1) = [0+1+…+k] + (k+1) by def

= k(k+1)/2  +  (k+1) by I.H.

= (k+1)(k+2)/2 algebra

 Conclusion: 0+1+…+n = n(n+1)/2 for all n ≥ 0



A Note on Base Cases 
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 Sometimes we are interested in showing some proposition is true for 
integers ≥ b

 Intuition: we knock over domino b, and dominoes in front get 
knocked over; not interested in 0,1,…,(b − 1)

 In general, the base case in induction does not have to be 0

 If base case is some integer b
 Induction proves the proposition for n = b, b+1, b+2, …

 Does not say anything about n = 0,1,…,b − 1

0 2 3 54



Weak Induction: Nonzero Base Case
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 Claim: You can make any amount of postage above 8¢ with 
some combination of 3¢ and 5¢ stamps

 Basis: True for 8¢:  8 = 3 + 5

 Induction Hypothesis: Suppose true for some k ≥ 8

 Inductive Step:
 If used a 5¢ stamp to make k, replace it by two 3¢ stamps.  Get k+1.

 If did not use a 5¢ stamp to make k, must have used at least three 3¢ 
stamps.  Replace three 3¢ stamps by two 5¢ stamps.  Get k+1.

 Conclusion: Any amount of postage above 8¢ can be made 
with some combination of 3¢ and 5¢ stamps



What are the “Dominos”?
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 In some problems, it can be tricky to determine how 

to set up the induction

 This is particularly true for geometric problems that 

can be attacked using induction



A Tiling Problem
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 A chessboard has one square cut out of it

 Can the remaining board be tiled using tiles of the shape 

shown in the picture (rotation allowed)?

 Not obvious that we can use induction!

8

8



Proof Outline
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 Consider boards of size 2n x 2n for n = 1,2,…

 Basis: Show that tiling is possible for 2 x 2 board

 Induction Hypothesis: Assume the 2k x 2k board can be 
tiled

 Inductive Step: Using I.H. show that the 2k+1 x 2k+1

board can be tiled

 Conclusion: Any 2n x 2n board can be tiled, n = 1,2,…

 Our chessboard (8 x 8) is a special case of this argument

 We will have proven the 8 x 8 special case by solving a 
more general problem!



Basis
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 The 2 x 2 board can be tiled regardless of which 

one of the four pieces has been omitted 

2 x 2 board



4 x 4 Case
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 Divide the 4 x 4 board into four 2 x 2 sub-boards

 One of the four sub-boards has the missing piece

 By the I.H., that sub-board can be tiled since it is a 2 x 2 board with a missing piece

 Tile center squares of three remaining sub-boards as shown

 This leaves three 2 x 2 boards, each with a missing piece

 We know these can be tiled by the Induction Hypothesis



2k+1 x 2k+1 case
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 Divide board into four sub-boards and tile the center squares 

of the three complete sub-boards

 The remaining portions of the sub-boards can be tiled by the 

I.H. (which assumes we can tile 2k x 2k boards)



When Induction Fails
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 Sometimes an inductive proof strategy for some 
proposition may fail

 This does not necessarily mean that the proposition is 
wrong

 It may just mean that the particular inductive strategy you 
are using is the wrong choice

 A different induction hypothesis (or a different proof 
strategy altogether) may succeed



Tiling Example (Poor Strategy)
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 Let’s try a different induction strategy

 Proposition

 Any n x n board with one missing square can be tiled

 Problem

 A 3 x 3 board with one missing square has 8 remaining 
squares, but our tile has 3 squares; tiling is impossible

 Thus, any attempt to give an inductive proof of this 
proposition must fail

 Note that this failed proof does not tell us anything 
about the 8x8 case



A Seemingly Similar Tiling Problem
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 A chessboard has opposite corners cut out of it.  Can the 

remaining board be tiled using tiles of the shape shown in the 

picture (rotation allowed)?

 Induction fails here.  Why?  (Well…for one thing, this board 

can’t be tiled with dominos.)

8

8



Strong Induction
29

 We want to prove that some property P holds for all n

 Weak induction
 P(0): Show that property P is true for 0

 P(k) ⇒ P(k+1): Show that if property P is true for k, it is true for k+1

 Conclude that P(n) holds for all n

 Strong induction
 P(0): Show that property P is true for 0

 P(0) and P(1) and … and P(k) ⇒ P(k+1): show that if P is true for 
numbers less than or equal to k, it is true for k+1

 Conclude that P(n) holds for all n

 Both proof techniques are equally powerful



Conclusion
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 Induction is a powerful proof technique

 Recursion is a powerful programming technique

 Induction and recursion are closely related

We can use induction to prove correctness and 

complexity results about recursive programs


