
RACE CONDITIONS AND RACE CONDITIONS AND
SYNCHRONIZATION

Lecture 21 – CS2110 – Fall 2010

Reminder

A “race condition” arises if two threads try and

2

A race condition arises if two threads try and
share some data
One updates it and the other reads it, or both One updates it and the other reads it, or both
update the data
In such cases it is possible that we could see the data In such cases it is possible that we could see the data
“in the middle” of being updated

A “race condition”: correctness depends on the update p p
racing to completion without the reader managing to
glimpse the in-progress update
Synchronization (aka mutual exclusion) solves this

Java Synchronization (Locking)y (g)
3

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
St i t k ()String s = stack.pop();

}
//do something with s...

} synchronized block

• Put critical operations in a synchronized block

synchronized block

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

Java Synchronization (Locking)y (g)
4

•You can lock on any object, including this

public synchronized void doSomething() {

y j , g

...
}

is equivalent to
public void doSomething() {

synchronized (this) {
...

}

q

}
}

How locking worksg

Only one thread can “hold” a lock at a time

5

Only one thread can hold a lock at a time
If several request the same lock, Java somehow decides
which will get it

The lock is released when the thread leaves the
synchronization block

synchronized(someObject) { protected code }
The protected code has a mutual exclusion guarantee:
At most one thread can be in it

When released, some other thread can acquire the
lock

Locks are associated with objectsj

Every Object has its own built-in lock

6

Every Object has its own built in lock
Just the same, some applications prefer to create
special classes of objects to use just for locking
This is a stylistic decision and you should agree on it
with your teammates or learn the company policy if you
work at a company

Code is “thread safe” if it can handle multiple
h d i i h i i i “ f ”threads using it… otherwise it is “unsafe”

File Locking: Same ideag
7

I fil t if t• In file systems, if two or more processes
could modify a file simultaneously, this could
result in data corruptionresult in data corruption

• A process must open a file to modify it –
gives exclusive access until it is closedg

• Multiple processes can open the same
file to read it

• This file locking synchronization rule is
enforced by the operating system

Deadlock
8

•The downside of locking – deadlockg

•A deadlock occurs when two or more
ti th d h h ld l k dcompeting threads each hold a lock, and

each are waiting for the other to relinquish a
lock so neither ever doeslock, so neither ever does

•Example:p
– thread A tries to open file X, then file Y
– thread B tries to open file Y, then file X
– A gets X B gets Y– A gets X, B gets Y
– Each is waiting for the other forever

Visualizing deadlockg
9

A has a lock on X
wants a lock on Y

Process Process
A BX Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cyclesy y

They can include 2 or more threads or processes in

10

They can include 2 or more threads or processes in
a waiting cycle
Other properties:Other properties:

The locks need to be mutually exclusive (no sharing of
the objects being locked)
The application won’t give up and go away (no timer
associated with the lock request)
There are no mechanisms for one thread to take locked
resources away from another
thread no “preemption”thread – no preemption

wait/notify
11

•A mechanism for event-driven activation of
threads

A i ti th d d th t•Animation threads and the GUI event-
dispatching thread in can interact via
wait/notifywait/notify

wait/notify
12

animator:

boolean isRunning = true;

public synchronized void run() {
while (true) {

hil (i i) {while (isRunning) {
//do one step of simulation

}
try {

i ()

relinquishes lock on animator –
awaits notification

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

Technically an error.
Should be synchronized}

g
}

public void restartAnimation() {
synchronized(animator) {notifies processes waiting

Should be synchronized

y
animator.notify();

}
}

notifies processes waiting
for animator lock

A producer/consumer examplep / p

Thread A produces loaves of bread and puts them

13

Thread A produces loaves of bread and puts them
on a shelf with capacity K

For example, maybe K=10p , y

Thread B consumes the loaves by taking them off
the shelf

Thread A doesn’t want to overload the shelf
Thread B doesn’t wait to leave with empty armsp y

producer shelves consumer

Producer/Consumer example/ p
14

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

bli h i d id d () {public synchronized void produce() {
while(nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty

}}

public synchronized void consume() {
while(nLoaves == 0) this.wait(); // Wait until not empty

L--nLoaves;
this.notifyall(); // Signal: shelf not full

}
}

Things to noticeg

Wait needs to wait on the same Object that you

15

Wait needs to wait on the same Object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)y)

Notify wakes up just one waiting thread, notifyall Notify wakes up just one waiting thread, notifyall
wakes all of them up

We used a while loop because we can’t predict
exactly which thread will wake up “next”exactly which thread will wake up next

Trickier examplep

Suppose we want to use locking in a BST

16

Suppose we want to use locking in a BST
Goal: allow multiple threads to search the tree
But don’t want an insertion to cause a search thread to But don t want an insertion to cause a search thread to
throw an exception

Code we’re given is unsafe
l BST {

17

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {public Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
i ht t(l l)right.put(goal, value);

}
}

}

Attempt #1p

Just make both put and get synchronized:

18

Just make both put and get synchronized:
public synchronized Object get(…) { … }
public synchronized void put(…) { … }public synchronized void put(…) { … }

Let’s have a look….Let s have a look….

Safe version: Attempt #1
l BST {

19

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {public synchronized Object get(Object goal) {

if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, object value) {

if(name.equals(goal)) { this.value = value; return; }
if(name.compareTo(goal) < 0) {if(name.compareTo(goal) < 0) {

if(left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if(right == null) { right = new BST(goal, value); return; }
i ht t(l l)right.put(goal, value);

}
}

}

Attempt #1p

Just make both put and get synchronized:

20

Just make both put and get synchronized:
public synchronized Object get(…) { … }
public synchronized void put(…) { … }public synchronized void put(…) { … }

This works but it kills ALL concurrencyThis works but it kills ALL concurrency
Only one thread can look at the tree at a time
Even if all the threads were doing “get”!ve a e eads we e do g ge !

Visualizing attempt #1g p
21

Freddy
netid: ff1

Put(Ernie, eb0)
Get(Martin)… must

wait!
Get(Martin)…

resumes

Cathy Martin
8cd4 mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
gb0

Attempt #2p

put uses synchronized in method declaration

22

put uses synchronized in method declaration
So it locks every node it visits

get tries to be fancy:get tries to be fancy:
// Returns value if found, else null
public Object get(Object goal) {

synchronized(this) {y () {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}
}

Actually this is identical to attempt 1! It only looks
diff b i f i d i l h hi

}

different but in fact is doing exactly the same thing

Attempt #3p
23

// Returns value if found, else null
public Object get(Object goal) {public Object get(Object goal) {

boolean checkLeft = false, checkRight = false;
synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) {

if (left==null) return null; else checkLeft = true;
} else {

if(right==null) return null; else checkRight = true;
}

}

relinquishes lock on this – next
lines are “unprotected”}

if (checkLeft) return left.get(goal);
if (checkRight) return right.get(goal);

/* Never executed but keeps Java happy */ return null;
}

Risk: “get” (read-only) threads sometimes look at nodes without
l k b t “ t” l d t th d

}

locks, but “put” always updates those same nodes.
According to JDK rules this is unsafe

Attempt #4p
24

// Returns value if found, else null
public Object get(Object goal) {public Object get(Object goal) {

BST checkLeft = null, checkRight = null;
synchronized(this) {
if(name.equals(goal)) return value;
if(name.compareTo(goal) < 0) {

if (left==null) return null; else checkLeft = left;
} else {

if(right==null) return null; else checkRight = right;
}

}}
if (checkLeft != null) return checkleft.get(goal);
if (checkRight != null) return checkright.get(goal);

/* Never executed but keeps Java happy */ return null;
}

This version is safe: only accesses the shared variables left and
i ht hil h ldi l k

}

right while holding locks
In fact it should work (I think)

Attempt #3 illustrates risksp

The hardware itself actually needs us to use locking

25

The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various waysy y

Issue: put updates several fields:
parent.left (or parent.right) for its parent node
this.left and this.right and this.name and this.value

When locking is used correctly, multicore hardware will
tl i l t th d tcorrectly implement the updates

But if you look at values without locking, as we did in
Attempt #3 hardware can malfunction!Attempt #3, hardware can malfunction!

Why can hardware malfunction?

Issue here is covered in cs3410 & cs4410

26

Problem is that the hardware was designed under the requirement that
if threads contend to access shared memory, then readers and writers
must use locksus use oc s

Solutions #1 and #2 used locks and so they worked, but had no
concurrency

Solution #3 violated the hardware rules and so you could see various Solution #3 violated the hardware rules and so you could see various
kinds of garbage in the fields you access!

Solution #4 should be correct, but perhaps not optimally concurrent
(doesn’t allow concurrency while even one “put” is active)(doesn’t allow concurrency while even one put” is active)

It’s hard to design concurrent data structures!

Summaryy
27

Use of multiple processes and multiple threads within each
process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)
But when using threads, beware!

Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions
Yet synchronization also creates risk of deadlocks
E i h l ki h h Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic (covered
in more detail in cs3410 and cs4410)in more detail in cs3410 and cs4410)

ECE/CS 3420, looks at why the hardware has this issue but not from
the perspective of writing concurrent code

