
THREADS AND
CONCURRENCYCONCURRENCY

Lecture 20 – CS2110 – Fall 2009

Prelim 2 Reminder

Prelim 2

2

Tuesday 16 Nov, 7:30-9pm
Uris G01 Auditorium
Ten days from today!Ten days from today!
Topics: all material up to and including this week's lectures
Includes graphs

Exam conflicts
You’ll take the exam early, at 6pm, in the same place

Prelim 2 Topicsp
3

Asymptotic complexity Know and understand the sorting y p p y
Searching and sorting
Basic ADTs

stacks

g
algorithms
From lecture
From text (not Shell Sort)

queues
sets
dictionaries

Know the algorithms associated
with the various data structures
Know BST algorithms, but don’t need

priority queues
Basic data structures used to
implement these ADTs

arrays

g
to memorize balanced BST
algorithms
Know the runtime tradeoffs

arrays
linked lists
hash tables
binary search trees

among data structures
Don’t worry about details of API
But should have basic understanding y

heaps of what’s available

Prelim 2 Topicsp
4

Language features GUI dynamicsLanguage features
inheritance
inner classes
anonymous inner classes

y
events
listeners
adaptersanonymous inner classes

types & subtypes
iteration & iterators

p

GUI statics
layout managersy g
components
containers

Data Structure Runtime
SummarySummary

5

Stack [ops = put & get] Priority Queue [ops = insert &Stack [ops = put & get]
O(1) worst-case time

Array (but can overflow)
Linked list

Priority Queue [ops insert &
getMin]
O(1) worst-case time if set of priorities
is bounded

O(1) time/operation
Array with doubling

One queue for each priority
O(log n) worst-case time
Heap (but can overflow)

Queue [ops = put & get]
O(1) worst-case time

Array (but can overflow)

O(log n) time/operation
Heap (with doubling)
O(n) worst-case time

Linked list (need to keep track of
both head & last)

O(1) time/operation
Array with doubling

Unsorted linked list
Sorted linked list (O(1) for getMin)
Unsorted array (but can overflow)
Sorted array (O(1) for getMin but canArray with doubling Sorted array (O(1) for getMin, but can
overflow)

Data Structure Runtime Summary (Cont’d)
6

Set [ops = insert & remove & Dictionary [ops = insert(k,v) &
contains]

O(1) worst-case time
Bit-vector (can also do union and

get(k) & remove(k)]
O(1) expected time
Hash table (with doubling & chaining)

intersect in O(1) time)

O(1) expected time
Hash table (with doubling & chaining)

O(log n) worst-case time
Balanced BST
O(log n) expected time

O(log n) worst-case time
Balanced BST

O(n) worst-case time

Unbalanced BST (if data is sufficiently
random)
O(n) worst-case time
Linked list

Linked list
Unsorted array
Sorted array (O(log n) for contains)

Linked list
Unsorted array
Sorted array (O(log n) for contains)

What is a Thread?
7

• A separate process that can perform a
computational task independently and
concurrently with other threads

–Most programs have only one thread
GUI h t th d th t–GUIs have a separate thread, the event
dispatching thread

–A program can have many threadsA program can have many threads
–You can create new threads in Java

What is a Thread?
8

• On many machines threads are an illusion• On many machines, threads are an illusion
–Not all machines have multiple processors
–But a single processor can share its time among–But a single processor can share its time among

all the active threads
–Implemented with support from underlyingImplemented with support from underlying

operating system or virtual machine
–Gives the illusion of several threads runningGives the illusion of several threads running

simultaneously
• But modern computers often have “multicore” p

architectures: multiple CPUs on one chip

Why Multicore?y
9

Moore’s Law: Computer speeds and memoryMoore s Law: Computer speeds and memory
densities nearly double each year

But a fast computer runs hotp
10

Power dissipation rises as the square of thePower dissipation rises as the square of the
CPU clock rate
Chips were heading towards melting down!

Multicore: with four
CPUs (cores) on one chip,
even if we run each at half
speed we get more overallspeed we get more overall
performance!

Concurrency (aka Multitasking)y (g)
11

• Refers to situations in which several
threads are running simultaneouslythreads are running simultaneously

• Special problems ariseSpecial problems arise
–race conditions
–deadlock

Task Managerg
12

• The operating system provides p g y p
support for multiple “processes”

• In reality there there may be fewer
processors than processesprocessors than processes

• Processes are an illusion too – at the
hardware level, lots of multitasking

– memory subsystem

– video controller

buses– buses

– instruction prefetching

Threads in Java
13

• Threads are instances of the class ThreadThreads are instances of the class Thread
– can create as many as you like

• The Java Virtual Machine permits multiple
concurrent threads
initially only one thread (executes main)– initially only one thread (executes main)

• Threads have a priorityp y
– higher priority threads are executed preferentially
– a newly created Thread has initial priority equal to

the thread that created it (but can change)the thread that created it (but can change)

Creating a new Thread (Method 1)g ()
14

class PrimeThread extends Thread {
long a, b;long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//

overrides
Thread.run()

//compute primes between a and b
...

}
}

can call run() directly –
the calling thread will run it}

PrimeThread p = new PrimeThread(143, 195);
p.start(); or, can call start(), ()

– will run run() in new thread

Creating a new Thread (Method 2)g ()
15

class PrimeRun implements Runnable {
long a, b;long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
////compute primes between a and b
...

}
} }

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

Example Thread[Thread-0,5,main] 0
Th d[i 5 i] 0

p
16

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Th d[i 5 i] 4Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Th d[i 5 i] 8

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();

Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Th d[Th d 0 5 i] 3

for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);
}

Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread 0 5 main] 7

}

public void run() {
for (int i = 0; i < 10; i++) {

Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example Thread[main,5,main] 0
Th d[i 5 i] 1

p
17

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Th d[i 5 i] 5Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Th d[i 5 i] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();

Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Th d[Th d 0 4 i] 3

for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);
}

Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread 0 4 main] 7

}

public void run() {
currentThread().setPriority(4);

Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);
}

}
}

Example Thread[main,5,main] 0
Th d[i 5 i] 1

p
18

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Th d[i 5 i] 5Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Th d[Th d 0 6 i] 3

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();

Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Th d[Th d 0 6 i] 7

for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);
}

Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main 5 main] 7

}

public void run() {
currentThread().setPriority(6);

Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);
}

}
}

Examplep
19

waiting...
running...
waiting...
running...public class ThreadTest extends Thread { running...
waiting...
running...
waiting...
running...

static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start(); running...

waiting...
running...
waiting...
running...

for (int i = 0; i < 10; i++) {
System.out.println("waiting...");
yield();

} allows other waiting running...
waiting...
running...
waiting...
running...

ok = false;
}

public void run() {

allows other waiting
threads to run

running...
waiting...
running...
waiting...
running...

while (ok) {
System.out.println("running...");
yield();

} running...
doneSystem.out.println("done");

}
}

Stopping Threadspp g
20

• Threads normally terminate by returning fromThreads normally terminate by returning from
their run method

•stop(), interrupt(), suspend(),
destroy(), etc. are all deprecated

l li ti i i i t t t t– can leave application in an inconsistent state
– inherently unsafe
– don't use them
– instead, set a variable telling the thread to stop itself

Daemon and Normal Threads
21

• A thread can be daemon or normalt ead ca be dae o o o a
– the initial thread (the one that runs main) is normal

• Daemon threads are used for minor or ephemeralDaemon threads are used for minor or ephemeral
tasks (e.g. timers, sounds)

A th d i i iti ll d iff it ti th d i• A thread is initially a daemon iff its creating thread is
– but this can be changed

• The application halts when either
– System.exit(int) is called, or
– all normal (non-daemon) threads have terminated

Race Conditions
22

• A race condition can arise when two or moreA race condition can arise when two or more
threads try to access data simultaneously

• Thread B may try to read some data while
thread A is updating it

d ti t b t i ti– updating may not be an atomic operation
– thread B may sneak in at the wrong time and read

the data in an inconsistent state

• Results can be unpredictable!

Example – A Lucky Scenariop y
23

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//d thi ith//do something with s...

}

Suppose threads A and B want to call doSomething(),Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1 thread A tests stack isEmpty() false1. thread A tests stack.isEmpty() false
2. thread A pops ® stack is now empty
3. thread B tests stack.isEmpty() true
4. thread B just returns – nothing to do

Example – An Unlucky Scenariop y
24

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//d thi ith//do something with s...

}

Suppose threads A and B want to call doSomething(),Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1 thread A tests stack isEmpty() false1. thread A tests stack.isEmpty() false
2. thread B tests stack.isEmpty() false
3. thread A pops stack is now empty
4. thread B pops Exception!

Solution – Lockingg
25

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
St i t k ()String s = stack.pop();

}
//do something with s...

} synchronized block

• Put critical operations in a synchronized block

synchronized block

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

Solution – Lockingg
26

•You can lock on any object, including this

public synchronized void doSomething() {

y j , g

...
}

is equivalent to
public void doSomething() {

synchronized (this) {
...

}

q

}
}

File Lockingg
27

I fil t if t• In file systems, if two or more processes
could access a file simultaneously, this
could result in data corruptioncould result in data corruption

• A process must open a file to use it – gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in
Java

Deadlock
28

•The downside of locking – deadlockg

•A deadlock occurs when two or more
ti th d iti f th thcompeting threads are waiting for the other

to relinquish a lock, so neither ever does

•Example:
–thread A tries to open file X, then file Y
–thread B tries to open file Y, then file X
–A gets X, B gets Y
–Each is waiting for the other foreverEach is waiting for the other forever

wait/notify
29

•A mechanism for event-driven activation of
threads

A i ti th d d th t•Animation threads and the GUI event-
dispatching thread in can interact via
wait/notifywait/notify

wait/notify
30

animator:

boolean isRunning = true;

public synchronized void run() {
while (true) {

hil (i i) {while (isRunning) {
//do one step of simulation

}
try {

i ()

relinquishes lock on animator –
awaits notification

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}
g

}

public void restartAnimation() {
synchronized(animator) {notifies processes waiting y

animator.notify();
}

}

notifies processes waiting
for animator lock

Summaryy
31

Use of multiple processes and multiple threads within p p p
each process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)
B t h i th d b !But when using threads, beware!

Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions
Yet synchronization also creates risk of deadlocks
Even with proper locking concurrent programs can have
other problems such as “livelock”other problems such as livelock

Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)

