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Representations of Graphs
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Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u

» Adjacency List
— Uses space O(m+n)
— Can iterate over all edges in time

o Adjacency Matrix
o Uses space O(n?)

o Can iterate over all edges in O(m+n)

: 2

time O(n) — Can answer “Is there an edge from
oCan answer “Is there an edge u to v?” in O(d(u)) time

from u to v?"in O(1) time — Better for sparse graphs (fewer

o Better for dense graphs (lots of edges)
edges)



Shortest Paths in Graphs

oFinding the shortest (min-cost) path in a graph is a
problem that occurs often

oFind the shortest route between Ithaca and West Lafayette, IN

nResult depends on our notion of cost
m Least mileage
m Least time
m Cheapest
m Least boring

oAll of these “costs™ can be represented as edge weights
oHow do we find a shortest path?



Dijkstra’s Algorithm

e

dijkstra(s) {
// Note: c(s,t) =

cost of the s,t edge if present
//

Integer .MAX VALUE otherwise
D[s] = 0; D[t] = c(s,t), t # s;
mark s;

while (some vertices are unmarked) {
v

unmarked node with smallest D;
mark v;

for (each w adjacent to v) {
D[w] = min(D[w], D[v] + c(v,w))
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Proof of Correctness

The following are invariants of the loop:
« Xis the set of marked nodes
 Foru € X, D(u) =d(s,u)
« Forue Xandv & X, d(s,u) <d(s,v)
« For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the path
(except possibly u) are in X

Implementation:
« Use a priority queue for the nodes not yet
taken — priority is D(u)



Shortest Paths for Unweighted

Graphs — A Special Case

noUse breadth-first search

oTime is O(n + m) in adj
list representation, O(n?)
iIn adj matrix
representation




Undirected Trees

* An undirected graph is a tree if there is
exactly one simple path between any pair
of vertices



Facts About Trees
o 5

* |E[ = V] -1
e connected
* NO cycles

In fact, any two of
these properties
imply the third, and
imply that the graph
IS a tree



Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree




Spanning Trees
T

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

« Same set of
vertices V

E'CE
* (V,E') is a tree




Finding a Spanning Tree
A subtractive method

 Start with the whole graph — it is connected

* |f there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still

connected (why?)

* Repeat until no more

cycles
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Finding a Spanning Tree
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An additive method

 Start with no edges — there are no cycles

* If more than one
connected component,
Insert an edge betwee
them — still no cycles
(Why?)

* Repeat until only one
component
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Finding a Spanning Tree
2 5

An additive method

 Start with no edges — there are no cycles

* If more than one
connected component,
Insert an edge betwee
them — still no cycles
(Why?)

* Repeat until only one
component




Minimum Spanning Trees
El .

« Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

« Some graphs have exactly one minimum
spanning tree. Others have multiple trees with
the same cost, any of which is a minimum
spanning tree



Minimum Spanning Trees

« Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

« Useful in network
routing & other
applications

* For example, to
stream a video



3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,
throw it out, otherwise keep it
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3 Greedy Algorithms
B. Find a min weight edge — if it forms a cycle

with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm
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3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)
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3 Greedy Algorithms

* When edge weights are all distinct, or if there
IS exactly one minimum spanning tree, the 3
algorithms all find the identical tree
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Prim’s Algorithm

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {
v = unmarked vertex with smallest D;
mark v;

for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}
}
}
» O(n?) for adj matrix 0 O(m + n log n) for adj list
— While-loop is executed n times o Use a PQ

— For-loop takes O(n) time o Regular PQ produces time O(n + m log m)

o Can improve to O(m + n log n) using a
fancier heap



Greedy Algorithms

o These are examples of Greedy * Example: the Change Making
Algorithms Problem: Given an amount of

money, find the smallest number of
coins to make that amount

 Solution: Use a Greedy Algorithm
— Give as many large coins as you can

* This greedy strategy produces the

optimum number of coins for the

solution

o The Greedy Strategy is an
algorithm design technique

o Like Divide & Conquer

0 Greedy algorithms are used to
solve optimization problems

« Different money system ® greedy
o Works when the problem has the strategy may fail

greedy-choice property
o A global optimum can be reached
by making locally optimum
choices

— Example: old UK system



Similar Code Structures

 Breadth-first-search (bfs)

while (some vertices are —best: next in queue
unmarked) { —update: D[w] = D[v]+1
e e a ke d - Dijkstra’s algorithm
vertices;
mark v: —best: next in PQ
update w; * Prim’s algorithm
} —best: next in PQ

—update: D[w] = min(D[w], c(v,w))



