=

MORE GRAPHS

Lecture 19
CS2110 — Fall 2010

Adjacency Matrix or Adjacency List?
[Em s

n = number of vertices
m = number of edges
d(u) = outdegree of u

oAdjacency Matrix * Adjacency List
—Uses space O(m+n)

2
° Uses. space O(n) . —Can iterate over all edges in time
oCan iterate over all edges in O(m+n)

i 2

time O(n) —Can answer “Is there an edge from
oCan answer “Is there an edge u to v?” in O(d(u)) time

from u to v?”in O(1) time — Better for sparse graphs (fewer
oBetter for dense graphs (lots of edges)

edges)

Dijkstra’s Algorithm

[ES |

dijkstra(s) {
// Note: c(s,t) = cost of the s,t edge if present
/1 Integer.MAX VALUE otherwise

D[s] = 0; D[t] = c(s,t), t # s;
mark s;
while (some vertices are unmarked) {
v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {
Dlw] = min(D[w], DIV] + c(v,w));
}
}
}

01/11/2010

Representations of Graphs

B2

1 2
4 3
Adjacency List Adjacency Matrix
Ze—I] e
1 0 1 0 1
[Zg of—[=] N rarEmn
m 3 0 0 0 0
4 o 1 1 o
[—[Z—[]

Shortest Paths in Graphs

oFinding the shortest (min-cost) path in a graph is a
problem that occurs often
oFind the shortest route between Ithaca and West Lafayette, IN
oResult depends on our notion of cost
u Least mileage
u Least time
u Cheapest
m Least boring
oAll of these “costs” can be represented as edge weights

oHow do we find a shortest path?

Dijkstra’s Algorithm

2.4
ey
0.9
1.5 1
4 3
3T
1.5

01/11/2010

Dijkstra’s Algorithm Dijkstra’s Algorithm
| B
X 5 24 X 5 16
Dijkstra’s Algorithm Dijkstra’s Algorithm
|
X2 8 Xm1.6
1ls ! 0.9 C ¢ }1.9
Dijkstra’s Algorithm Dijkstra’s Algorithm

X ~ 34 \16 X a4 16
.9 9
<5 .1 5 1
4 3
—3. 1 —3.
1.5 2.5 1.5 2.5

Dijkstra’s Algorithm

Shortest Paths for Unweighted

Graphs — A Special Case

oUse breadth-first search
oTime is O(n + m) in adj
list representation, O(n?)
e in adj matrix
representation

Facts About Trees

*[El =|V]-1
» connected
* no cycles

In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

01/11/2010

Proof of Correctness

The following are invariants of the loop:
» Xis the set of marked nodes
» Foru € X, D(u) =d(s,u)
* ForueXandv ¢ X, d(s,u) £d(s,v)
» For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the path
(except possibly u) are in X

Implementation:
» Use a priority queue for the nodes not yet
taken — priority is D(u)

Undirected Trees

» An undirected graph is a tree if there is
exactly one simple path between any pair
of vertices

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

» Same set of
vertices V

*E'CE
*(V,E") is a tree

Finding a Spanning Tree

A subtractive method

« Start with the whole graph — it is connected

« If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still
connected (why?)

* Repeat until no more
cycles

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

* If more than one
connected component, . »
insert an edge between \9
them — still no cycles . . »
(why?) . v

* Repeat until only one 3 ” v,
component

01/11/2010

Finding a Spanning Tree

A subtractive method

- Start with the whole graph — it is connected

« If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still
connected (why?)

» Repeat until no more
cycles

Finding a Spanning Tree

A subtractive method

« Start with the whole graph — it is connected

« If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still
connected (why?)

» Repeat until no more
cycles

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

« If more than one .

connected component,
insert an edge between
them — still no cycles
(why?)

» Repeat until only one
component

>\\\

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

//\\

« If more than one *

connected component,
insert an edge between
them — still no cycles
(why?)

* Repeat until only one
component

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

/\\

* If more than one
connected component,
insert an edge between
them — still no cycles
(why?)

* Repeat until only one
component

Minimum Spanning Trees

» Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

» Some graphs have exactly one minimum
spanning tree. Others have multiple trees with
the same cost, any of which is a minimum
spanning tree

01/11/2010

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

/\\

* If more than one
connected component,
insert an edge between
them — still no cycles
(why?)

* Repeat until only one
component

Finding a Spanning Tree

An additive method

« Start with no edges — there are no cycles

/\\

* If more than one
connected component,
insert an edge betweep
them — still no cycles
(why?)

* Repeat until only one
component

Minimum Spanning Trees

» Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

 Useful in network
routing & other
applications

* For example, to
stream a video

3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,

throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,

throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,

throw it out, otherwise keep it

01/11/2010

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,

throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,

throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,

throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's »
algorithm . A

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's »
algorithm .

01/11/2010

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

-9
L]
Kruskal's) .
algorithm <~/ | =7 .
. » .
L2 L 2

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's »

algorithm ~ /

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's ol

algorithm ~ /

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm »
(reminiscent of 4 X
Dijkstra's algorithm) »

01/11/2010

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

. .
L
Prim's algorithm) .
(reminiscent of . X
Dijkstra's algorithm) 1 e »
. » .
L2 L2

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

L 3 L]

Prim's algorithm »

(reminiscent of 4 J X
Dijkstra's algorithm) \ »
» .

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm o
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

* When edge weights are all distinct, or if there
is exactly one minimum spanning tree, the 3
algorithms all find the identical tree

01/11/2010

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm o
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

Prim’s Algorithm

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {
v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {
D[w] = min(D[w], c(v,w));
}
}
}

+ O(n?) for adj matrix
— While-loop is executed n times
— For-loop takes O(n) time

o O(m + n log n) for adj list
oUse a PQ
o Regular PQ produces time O(n + m log m)

o Can improve to O(m + n log n) using a
fancier heap

Greedy Algorithms

o These are examples of Greedy
Algorithms
o The Greedy Strategy is an
algorithm design technique
o Like Divide & Conquer
o Greedy algorithms are used to
solve optimization problems
o The goal is to find the best
solution
o Works when the problem has the
greedy-choice property
o A global optimum can be reached
by making locally optimum
choices

« Example: the Change Making
Problem: Given an amount of
money, find the smallest number of
coins to make that amount

« Solution: Use a Greedy Algorithm

— Give as many large coins as you can

« This greedy strategy produces the
optimum number of coins for the
US coin system

« Different money system ® greedy
strategy may fail

— Example: old UK system

01/11/2010

Similar Code Structures

while (some vertices are
unmarked) {

v = best of unmarked
vertices;

mark v;
for (each w adj to v)
update w;

* Breadth-first-search (bfs)
—best: next in queue

—update: D[w] = D[v]+1

« Dijkstra’s algorithm
—best: next in PQ

—update: D[w] = min(D[w], D[v]+c(v,w))

* Prim’s algorithm
—best: next in PQ

—update: D[w] = min(D[w], c(v,w))

10

