
10/24/2010

1

GRAPHS
Lecture 18

CS2110 – Fall 2010

Announcements

Prelim 2: Two and a half weeks from now
Tuesday, Nov 16, 7:30-9pm, Uris G01

Exam conflicts?

2

Same deal: just take our exam from 6:00-7:30

Old exams available on the course website
The Fall 2009 exam is closest to what we’ll use

These are not Graphs

3

...not the kind we mean, anyway

These are Graphs
4

K KK5 K3,3

=

Applications of Graphs
5

Communication networks
Routing and shortest path problems
Commodity distribution (flow)y ()
Traffic control
Resource allocation
Geometric modeling
...

Graph Definitions
6

A directed graph (or digraph) is a pair (V, E)
where

V is a set
E is a set of ordered pairs (u,v) where u,v � V

Usually require u ⎯ v (i e no self loops)Usually require u v (i.e., no self-loops)

An element of V is called a vertex (pl. vertices)
or node
An element of E is called an edge or arc

|V| = size of V, often denoted n
|E| = size of E, often denoted m

10/24/2010

2

Example Directed Graph (Digraph)
7

b

a

c
d

e
f

V = {a,b,c,d,e,f }
E = {(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),

(c,f), (d,e), (d,f), (e,f) }

|V| = 6, |E| = 11

e

Example Undirected Graph
8

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example:
b

d

a

c

e

d

f

V = {a,b,c,d,e,f }
E = {{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f},

{d,e}, {d,f }, {e,f }}

Some Graph Terminology
9

Vertices u and v are called the source and sink of the directed
edge (u,v), respectively
Vertices u and v are called the endpoints of (u,v)
Two vertices are adjacent if they are connected by an edge
The outdegree of a vertex u in a directed graph is the number of
edges for which u is the sourceedges for which u is the source
The indegree of a vertex v in a directed graph is the number of
edges for which v is the sink
The degree of a vertex u in an undirected graph is the number
of edges of which u is an endpoint

b

a

c

e

d

f

b

a

c
d

e
f

More Graph Terminology
10

A path is a sequence v0,v1,v2,...,vp of vertices
such that (vi,vi+1) E, 0 ≤ i ≤ p – 1
The length of a path is its number of edges

In this example, the length is 5

v0

v5

A path is simple if it does not repeat any
vertices
A cycle is a path v0,v1,v2,...,vp such that v0 = vp
A cycle is simple if it does not repeat any
vertices except the first and last
A graph is acyclic if it has no cycles
A directed acyclic graph is called a dag

b

a

c
d

e
f

Is This a Dag?
11

b

a

c
d

e
f

Intuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
12

b

a

c
d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

10/24/2010

3

Is This a Dag?
13

b

c
d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
14

b

c
d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
15

c
d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
16

c
d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
17

d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
18

d

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

10/24/2010

4

Is This a Dag?
19

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
20

e
f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Is This a Dag?
21

f

I t itiIntuition:
If it’s a dag, there must be a vertex with indegree
zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively
delete indegree-0 vertices until the graph
disappears

Topological Sort
22

We just computed a topological sort of the dag
This is a numbering of the vertices such that all
edges go from lower- to higher-numbered vertices

1
3

Useful in job scheduling with precedence
constraints

0

2
3

4
5

Graph Coloring
23

A coloring of an undirected graph is an
assignment of a color to each node such
that no two adjacent vertices get the same
color

How many colors are needed to color this
graph?

Graph Coloring
24

A coloring of an undirected graph is an
assignment of a color to each node such
that no two adjacent vertices get the same
color

How many colors are needed to color this
graph?

3

10/24/2010

5

An Application of Coloring
25

Vertices are jobs
Edge (u,v) is present if jobs u and v each
require access to the same shared
resource and thus cannot executeresource, and thus cannot execute
simultaneously
Colors are time slots to schedule the jobs
Minimum number of colors needed to color
the graph = minimum number of time slots
required

Planarity
26

A graph is planar if it can be embedded in
the plane with no edges crossing

Is this graph planar?

Planarity
27

A graph is planar if it can be embedded in
the plane with no edges crossing

Is this graph planar?
Yes

Planarity
28

A graph is planar if it can be embedded in
the plane with no edges crossing

Is this graph planar?
Yes

Detecting Planarity
29

Kuratowski's Theorem

A graph is planar if and only if it does not
contain a copy of K5 or K3,3 (possibly with
other nodes along the edges shown)

K3,3K5

The Four-Color Theorem
30

Every planar graph
is 4-colorable

(Appel & Haken, 1976)

10/24/2010

6

Bipartite Graphs
31

A directed or undirected graph is
bipartite if the vertices can be partitioned
into two sets such that all edges gointo two sets such that all edges go
between the two sets

Bipartite Graphs
32

The following are equivalent
G is bipartite
G is 2-colorableG is 2 colorable
G has no cycles of odd length

Traveling Salesperson
33

Amsterdam

Boston

London

Paris

CopenhagenIthaca

New York

Washington
1002

512
216

189
160

15561323

210

224 132

1078

Find a path of minimum distance that visits
every city

Rome
Atlanta

Munich
Washington

1202
1380

1214
1322

1356 441419
660 505

Representations of Graphs
34

Adjacenc List Adjacenc Matri

1 2

34

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Adjacency List Adjacency Matrix

Adjacency Matrix or Adjacency List?
35

n = number of vertices
m = number of edges
d(u) = degree of u =
number of edges
leaving u

Adjacency List
Uses space O(m+n)
Can iterate over all edges in time
O(m+n)
Can answer “Is there an edge from leaving u

Adjacency Matrix
Uses space O(n2)
Can iterate over all edges in time
O(n2)
Can answer “Is there an edge
from u to v?” in O(1) time
Better for dense graphs (lots of
edges)

u to v?” in O(d(u)) time
Better for sparse graphs (fewer
edges)

Graph Algorithms
36

• Search
– depth-first search
– breadth-first search

• Shortest paths• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

10/24/2010

7

Depth-First Search
37

• Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

• When you encounter a vertex previously• When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

• Eventually visit all vertices reachable from r
• If there are still unvisited vertices, repeat
• O(m) time

Depth-First Search
38

Depth-First Search
39

Depth-First Search
40

Depth-First Search
41

Depth-First Search
42

10/24/2010

8

Depth-First Search
43

Depth-First Search
44

Depth-First Search
45

Depth-First Search
46

Depth-First Search
47

Depth-First Search
48

10/24/2010

9

Depth-First Search
49

Depth-First Search
50

Depth-First Search
51

Depth-First Search
52

Depth-First Search
53

Depth-First Search
54

10/24/2010

10

Depth-First Search
55

Depth-First Search
56

Depth-First Search
57

Depth-First Search
58

Depth-First Search
59

Depth-First Search
60

10/24/2010

11

Depth-First Search
61

Breadth-First Search
62

• Same, except use a queue instead of a
stack to determine which edge to explore
next

63

Breadth-First Search
64

Breadth-First Search

65

Breadth-First Search
66

Breadth-First Search

10/24/2010

12

67

Breadth-First Search
68

Breadth-First Search

69

Breadth-First Search
70

Breadth-First Search

71

Breadth-First Search Shortest Paths
72

Suppose you have a US Airways route map
with intercity distances. You want to know the
shortest distance from Ithaca to every city y y
served by US Airways.

This is known as the single-source shortest
path problem.

10/24/2010

13

Shortest Paths
73

1 2 3 4

1

2

3

0 2.4 1.5

 0 0.9

 0

s = 1 2

34

2.4

0.91.5

3.1

0.1

4 0.1 3.1 0

Digraph with
edge weights

Corresponding
matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

Shortest Paths
74

s = 1 2

34

2.4

0.91.5

3.1

0.1

• Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,

• d(1,1) = 0

• d(1,2) = 1.6

• d(1,3) = 2.5

• d(1,4) = 1.5

Dijkstra's Algorithm
75

1 2

34

2.4

0.91.5

3.1

0.1

• Let X = {s}

X

• Let X = {s}
–X is the set of nodes for which we have already determined

the shortest path

• For each node u X, define D(u) = w(s,u)
–D(2) = 2.4

–D(3) =
–D(4) = 1.5

Dijkstra's Algorithm
76

1 2

34

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u)

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4

–D(3) =
–D(4) = 1.5

Dijkstra's Algorithm
77

4

1 2

3

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u) u = 4

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4
–D(3) =
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
78

4

1 2

3

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u) u = 4

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6

–D(3) = 4.6

–D(4) = 1.5 = d(1,4)

10/24/2010

14

Dijkstra's Algorithm
79

4

1 2

3

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u)

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6

–D(3) = 4.6
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
80

1 2

34

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u) u = 2

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6 = d(1,2)

–D(3) = 4.6
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
81

1 2

34

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u) u = 2

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6 = d(1,2)

–D(3) = 4.6 2.5
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
82

1 2

34

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u)

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6 = d(1,2)

–D(3) = 4.6 2.5
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
83

1 2

34

2.4

0.91.5

3.1

0.1

X

• Find u X such that D(u) is minimum, add it to X
–at that point, d(s,u) = D(u) u = 3

• For each node v X such that (u,v) � E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

–D(2) = 2.4 1.6 = d(1,2)

–D(3) = 4.6 2.5 = d(1,3)
–D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm
84

Proof of correctness – show that the
following are invariants of the loop:
•For u � X, D(u) = d(s,u)
•For u � X and v X, d(s,u) δ d(s,v), (,) (,)
•For all u, D(u) is the length of the shortest path
from s to u such that all nodes on the path (except
possibly u) are in X

Implementation:
•Use a priority queue for the nodes not yet taken –
priority is D(u)

10/24/2010

15

Complexity
85

• Every edge is examined once when its source is
taken into X

• A vertex may be placed in the priority queue
multiple times, but at most once for each
incoming edge

• Number of insertions and deletions into priority
queue = m + 1, where m = |E|

• Total complexity = O(m log m)

Conclusion
86

• There are faster but much more complicated
algorithms for single-source, shortest-path problem
that run in time O(n log n + m) using something
called Fibonacci heaps

• It is important that all edge weights be nonnegative
– Dijkstra's algorithm does not work otherwise, we
need a more complicated algorithm called
Warshall's algorithm

• Learn about this and more in CS4820

