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The Bag Interface

A Bag:

interface Bag<E> {
void insert(E obj);
E extract(); //extract some element
boolean isEmpty();

}

Examples: Stack, Queue, PriorityQueue
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Stacks and Queues as Lists

• Stack (LIFO) implemented as list
–insert(), extract() from front of list

• Queue (FIFO) implemented as list
–insert() on back of list, extract() from 

front of list
• All Bag operations are O(1)
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Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by 
compareTo()) have higher priority

•extract() returns the element with the 
highest priority = least in the compareTo()
ordering

• break ties arbitrarily
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Priority Queue Examples
• Scheduling jobs to run on a computer
– default priority = arrival time
– priority can be changed by operator

• Scheduling events to be processed by an 
event handler

– priority = time of occurrence

• Airline check-in
– first class, business class, coach
– FIFO within each class
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java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)
void clear() {...} //remove all elements
E peek() {...} //return min element without removing

//(null if empty)
E poll() {...} //remove min element (extract)

//(null if empty)
int size() {...}
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Priority Queues as Lists

• Maintain as unordered list
–insert() puts new element at front – O(1)
–extract() must search the list – O(n)

• Maintain as ordered list
–insert() must search the list – O(n)
–extract() gets element at front – O(1)

• In either case, O(n2) to process n elements

Can we do better?
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Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

•insert()– insert in appropriate queue – O(1)
•extract()– must find a nonempty queue – O(p)
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Heaps

• A heap is a concrete data structure that can 
be used to implement priority queues

• Gives better complexity than either ordered or 
unordered list implementation:

–insert(): O(log n)
–extract(): O(log n)

• O(n log n) to process n elements
• Do not confuse with heap memory, where the 

Java virtual machine allocates space for 
objects – different usage of the word heap
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Heaps

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:

• Size of the heap is “fixed” at n.  (But can 
usually double n if heap fills up)

The least (highest priority) 
element of any subtree is found at 
the root of that subtree
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Least element in any subtree
is always found at the root
of that subtree

Note: 19, 20 < 35: we can often find
smaller elements deeper in the tree!
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Examples of Heaps

• Ages of people in family tree
– parent is always older than children, but you can have 

an uncle who is younger than you

• Salaries of employees of a company
– bosses generally make more than subordinates, but a 

VP in one subdivision may make less than a Project 
Supervisor in a different subdivision
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Balanced Heaps

These add two restrictions:

1. Any node of depth < d – 1 has exactly 2 
children, where d is the height of the tree

– implies that any two maximal paths (path from a root 
to a leaf) are of length d or d – 1, and the tree has at 
least 2d nodes

• All maximal paths of length d are to the left of 
those of length d – 1
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Example of a Balanced Heap

d = 3
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• Elements of the heap are stored in the array in 
order, going across each level from left to 
right, top to bottom

• The children of the node at array index n are 
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

Store in an ArrayList or Vector
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children of node n are found at 2n + 1 and 2n + 2
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Store in an ArrayList or Vector
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• Put the new element at the end of the array

• If this violates heap order because it is smaller 
than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful 
place

• The heap invariant is maintained!

insert()
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• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size
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class PriorityQueue<E> extends java.util.Vector<E> {

public void insert(E obj) {
super.add(obj); //add new element to end of array
rotateUp(size() - 1);

}

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)

return;
swap(index, parent);
rotateUp(parent);

}
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• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with the 

last element of the array
• If this violates heap order because the root 

element is too big, swap it down with the 
smaller of its children

• Continue swapping it down until it finds its 
rightful place

• The heap invariant is maintained!
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• Time is O(log n), since the tree is balanced
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public E extract() {
if (size() == 0) return null;
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);
rotateDown(0);
return temp;

}
private void rotateDown(int index) {
int child = 2*(index + 1); //right child
if (child >= size()

|| elementAt(child - 1).compareTo(elementAt(child)) < 0)
child -= 1;

if (child >= size()) return;
if (elementAt(index).compareTo(elementAt(child)) <= 0)

return;
swap(index, child);
rotateDown(child);

}
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HeapSort

Given a Comparable[] array of length n,

• Put all n elements into a heap – O(n log n) 
• Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq

= new PriorityQueue<Comparable>();
for (Comparable x : a) { pq.insert(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.extract(); }

}
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PQ Application: Simulation

Example: Probabilistic 
model of bank-customer 
arrival times and 
transaction times, how 
many tellers are needed?

Assume we have a way to 
generate random inter-
arrival times
Assume we have a way to 
generate transaction times
Can simulate the bank to 
get some idea of how long 
customers must wait

Time-Driven Simulation
• Check at each tick to 

see if any event occurs

Event-Driven Simulation
• Advance clock to next 

event, skipping 
intervening ticks

• This uses a PQ!
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