
PRIORITY QUEUES
AND HEAPS

Lecture 17
CS2110 Fall 2010

1

The Bag Interface

A Bag:

interface Bag<E> {
void insert(E obj);
E extract(); //extract some element
boolean isEmpty();

}

Examples: Stack, Queue, PriorityQueue

2

Stacks and Queues as Lists

• Stack (LIFO) implemented as list
–insert(), extract() from front of list

• Queue (FIFO) implemented as list
–insert() on back of list, extract() from

front of list
• All Bag operations are O(1)

55 120 19 16first

last

3

Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by
compareTo()) have higher priority

•extract() returns the element with the
highest priority = least in the compareTo()
ordering

• break ties arbitrarily

4

Priority Queue Examples
• Scheduling jobs to run on a computer
– default priority = arrival time
– priority can be changed by operator

• Scheduling events to be processed by an
event handler

– priority = time of occurrence

• Airline check-in
– first class, business class, coach
– FIFO within each class

5

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)
void clear() {...} //remove all elements
E peek() {...} //return min element without removing

//(null if empty)
E poll() {...} //remove min element (extract)

//(null if empty)
int size() {...}

6

Priority Queues as Lists

• Maintain as unordered list
–insert() puts new element at front – O(1)
–extract() must search the list – O(n)

• Maintain as ordered list
–insert() must search the list – O(n)
–extract() gets element at front – O(1)

• In either case, O(n2) to process n elements

Can we do better?

7

Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

•insert()– insert in appropriate queue – O(1)
•extract()– must find a nonempty queue – O(p)

8

Heaps

• A heap is a concrete data structure that can
be used to implement priority queues

• Gives better complexity than either ordered or
unordered list implementation:

–insert(): O(log n)
–extract(): O(log n)

• O(n log n) to process n elements
• Do not confuse with heap memory, where the

Java virtual machine allocates space for
objects – different usage of the word heap

9

Heaps

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:

• Size of the heap is “fixed” at n. (But can
usually double n if heap fills up)

The least (highest priority)
element of any subtree is found at
the root of that subtree

10

4

146

21 198 35

22 5538 10 20

Least element in any subtree
is always found at the root
of that subtree

Note: 19, 20 < 35: we can often find
smaller elements deeper in the tree!

11

Heaps

Examples of Heaps

• Ages of people in family tree
– parent is always older than children, but you can have

an uncle who is younger than you

• Salaries of employees of a company
– bosses generally make more than subordinates, but a

VP in one subdivision may make less than a Project
Supervisor in a different subdivision

12

Balanced Heaps

These add two restrictions:

1. Any node of depth < d – 1 has exactly 2
children, where d is the height of the tree

– implies that any two maximal paths (path from a root
to a leaf) are of length d or d – 1, and the tree has at
least 2d nodes

• All maximal paths of length d are to the left of
those of length d – 1

13

Example of a Balanced Heap

d = 3

4

146

21 198 35

22 5538 10 20

14

• Elements of the heap are stored in the array in
order, going across each level from left to
right, top to bottom

• The children of the node at array index n are
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

Store in an ArrayList or Vector
15

0

1 2

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2

4

146

21 198 35

22 5538 10 20

Store in an ArrayList or Vector
16

• Put the new element at the end of the array

• If this violates heap order because it is smaller
than its parent, swap it with its parent

• Continue swapping it up until it finds its rightful
place

• The heap invariant is maintained!

insert()
17

4

146

21 198 35

22 5538 10 20

18

insert()

4

146

21 198 35

22 5538 10 20 5

19

insert()

4

146

21

19

8 35

22 5538 10 20

5

20

insert()

4

14

6

21

19

8 35

22 5538 10 20

5

21

insert()

4

14

6

21

19

8 35

22 5538 10 20

5

22

insert()

insert()

4

14

6

21

19

8 35

22 5538 10 20

5

2

23

insert()

4

14

6

21

19

8

3522 5538 10 20

5

2

24

insert()

4

14

6

21

19

8

3522 5538 10 20

2

5

25

insert()

2

14

6

21

19

8

3522 5538 10 20

4

5

26

insert()

2

14

6

21

19

8

3522 5538 10 20

4

5

27

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size

28

insert()

class PriorityQueue<E> extends java.util.Vector<E> {

public void insert(E obj) {
super.add(obj); //add new element to end of array
rotateUp(size() - 1);

}

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)

return;
swap(index, parent);
rotateUp(parent);

}

insert()29

insert()

• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with the

last element of the array
• If this violates heap order because the root

element is too big, swap it down with the
smaller of its children

• Continue swapping it down until it finds its
rightful place

• The heap invariant is maintained!

30

extract()

4

56

21 148 35

22 5538 10 20 19

31

extract()

56

21 148 35

22 5538 10 20 19

4

32

extract()

56

21 148 35

22 5538 10 20 19

4

33

extract()

56

21 148 35

22 5538 10 20

194

34

extract()

5

6

21 148 35

22 5538 10 20

19

4

35

extract()

5

6

21

14

8 35

22 5538 10 20

19

4

36

extract()

5

6

21

14

8 35

22 5538 10 20

4

19

37

extract()

6

21

14

8 35

22 5538 10 20

4 5

19

38

extract()

6

21

14

8 35

22 5538 10 20

19

4 5

39

extract()

6

21

14

8 35

22 5538 10

20

19

4 5

40

extract()

6

21

14

8 35

22 5538 10

20

19

4 5

41

extract()

6

21

148

35

22 5538 10

20 19

4 5

42

extract()

6

21

148

35

22 5538

10

20

19

4 5

43

extract()

6

21

148

35

22 5538

10 19

20

4 5

44

extract()

• Time is O(log n), since the tree is balanced

45

extract()

public E extract() {
if (size() == 0) return null;
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);
rotateDown(0);
return temp;

}
private void rotateDown(int index) {
int child = 2*(index + 1); //right child
if (child >= size()

|| elementAt(child - 1).compareTo(elementAt(child)) < 0)
child -= 1;

if (child >= size()) return;
if (elementAt(index).compareTo(elementAt(child)) <= 0)

return;
swap(index, child);
rotateDown(child);

}

46

extract()

HeapSort

Given a Comparable[] array of length n,

• Put all n elements into a heap – O(n log n)
• Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq

= new PriorityQueue<Comparable>();
for (Comparable x : a) { pq.insert(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.extract(); }

}

47

PQ Application: Simulation

Example: Probabilistic
model of bank-customer
arrival times and
transaction times, how
many tellers are needed?

Assume we have a way to
generate random inter-
arrival times
Assume we have a way to
generate transaction times
Can simulate the bank to
get some idea of how long
customers must wait

Time-Driven Simulation
• Check at each tick to

see if any event occurs

Event-Driven Simulation
• Advance clock to next

event, skipping
intervening ticks

• This uses a PQ!

48

	Priority Queues and Heaps
	The Bag Interface
	Stacks and Queues as Lists
	Priority Queue
	Priority Queue Examples
	java.util.PriorityQueue<E>
	Priority Queues as Lists
	Important Special Case
	Heaps
	Heaps
	Heaps
	Examples of Heaps
	Balanced Heaps
	Example of a Balanced Heap
	Store in an ArrayList or Vector
	Store in an ArrayList or Vector
	insert()
	insert()
	insert()
	insert()
	insert()
	insert()
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	insert()
	insert()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	extract()
	HeapSort
	PQ Application: Simulation

