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Abstract Data Types (ADTs)

 A method for achieving 
abstraction for data structures 
and algorithms

 ADT = model + operations

 Describes what each 
operation does, but not how it 
does it

 An ADT is independent of its 
implementation

 In Java, an interface corresponds 
well to an ADT
 The interface describes the 

operations, but says nothing at all 
about how they are implemented

 Example: Stack interface/ADT

public interface Stack {
 public void push(Object x);
 public Object pop();
 public Object peek();
 public boolean isEmpty();
 public void clear();
}
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Queues & Priority Queues

 ADT Queue
 Operations:

void add(Object x);
Object poll();
Object peek();
boolean isEmpty();
void clear();

 Where used:
 Simple job scheduler (e.g., 

print queue)
 Wide use within other 

algorithms

 ADT PriorityQueue
 Operations:

void insert(Object x);
Object getMax();
Object peekAtMax();
boolean isEmpty();
void clear();

 Where used:
 Job scheduler for OS
 Event-driven simulation
 Can be used for sorting
 Wide use within other 

algorithms
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Sets
 ADT Set

 Operations:
void insert(Object element);
boolean contains(Object element);
void remove(Object element);
boolean isEmpty();
void clear();

 Where used:
 Wide use within other algorithms

 Note: no duplicates allowed
 A “set” with duplicates is sometimes called a multiset or bag
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Dictionaries

 ADT Dictionary (aka Map)
 Operations:

void insert(Object key, Object value);
void update(Object key, Object value);
Object find(Object key);
void remove(Object key);
boolean isEmpty();
void clear();

 Think of:  key = word; value = definition
 Where used:

 Symbol tables
 Wide use within other algorithms
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Data Structure Building Blocks

 These are implementation “building blocks” that are 
often used to build more-complicated data structures
 Arrays
 Linked Lists

 Singly linked
 Doubly linked

 Binary Trees
 Graphs

 Adjacency matrix
 Adjacency list
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Array Implementation of Stack

class ArrayStack implements Stack {

    

   private Object[] array; //Array that holds the Stack

   private int index = 0; //First empty slot in Stack

    

   public ArrayStack(int maxSize) 

      { array = new Object[maxSize]; }

    

   public void push(Object x) { array[index++] = x; }

   public Object pop() { return array[--index]; }

   public Object peek() { return array[index-1]; }

   public boolean isEmpty() { return index == 0; }

   public void clear() { index = 0; }

}
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O(1) worst-
case time for 
each 
operation

Question: What can go wrong?
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Linked List Implementation of Stack
class ListStack implements Stack {

   private Node head = null;  //Head of list that

                              //holds the Stack

    

   public void push(Object x) { head = new Node(x, head); }

   public Object pop() {

      Node temp = head;

      head = head.next;

      return temp.data;

   }

   public Object peek() { return head.data; }

   public boolean isEmpty() { return head == null; }

   public void clear() { head = null; }

}

head

O(1) worst-
case time for 
each operation 
(but constant 
is larger)

Note that array 
implementation can 
overflow, but the 
linked list version 
cannot
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Queue Implementations

 Possible implementations  Recall: operations are add, 
poll, peek,… 

 For linked-list
 All operations are O(1)

 For array with head at A[0]
 poll takes time O(n)
 Other ops are O(1)
 Can overflow

 For array with wraparound
 All operations are O(1)
 Can overflow

Linked List
head last

Array with wraparound
(can overflow)

head last

Array with head always at A[0]
(poll( ) becomes expensive) 

(can overflow)

last



10

A Queue From 2 Stacks

 Add pushes onto stack A
 Poll pops from stack B
 If B is empty, move all elements from stack A to stack B
 Some individual operations are costly, but still O(1) time 

per operations over the long run
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Dealing with Overflow

 For array implementations of stacks and queues, use 
table doubling

 Check for overflow with each insert op
 If table will overflow,

 Allocate a new table twice the size
 Copy everything over

 The operations that cause overflow are expensive, but 
still constant time per operation over the long run 
(proof later)



12

Goal: Design a Dictionary (aka Map)

 Operations

void insert(key, value)
void update(key, value)
Object find(key)
void remove(key)
boolean isEmpty()
void clear()

Array implementation:  Using an 
array of (key,value) pairs

 Unsorted Sorted
insert O(1) O(n)
update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items 
currently held in the dictionary
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Hashing

 Idea: compute an array index 
via a hash function h

 U is the universe of keys
 h: U → [0,…,m-1]

where m = hash table size
 Usually |U| is much bigger than 

m, so collisions are possible 
(two elements with the same 
hash code)

 h should
 be easy to compute
 avoid collisions 
 have roughly equal probability 

for each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a 
number, then compute a 
function of these numbers
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A Hashing Example

 Suppose each word below 
has the following hashCode

jan 7
feb 0
mar 5
apr 2
may 4
jun 7
jul  3
aug 7
sep 2
oct 5

 How do we resolve collisions?
 use chaining: each table 

position is the head of a list
 for any particular problem, this 

might work terribly

 In practice, using a good hash 
function, we can assume 
each position is equally likely
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Analysis for Hashing with Chaining

 Analyzed in terms of load 
factor λ = n/m = 
(items in table)/(table size)

 We count the expected 
number of probes (key 
comparisons)

 Goal: Determine expected 
number of probes for an 
unsuccessful search

 Expected number of probes 
for an unsuccessful search = 
average number of items per 
table position = n/m = λ 

 Expected number of probes 
for a successful search = 1 + 
λ/2 = O(λ)

 Worst case is O(n)
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Table Doubling

 We know each operation takes time O(λ) where λ=n/m

 So it gets worse as n gets large relative to m

 Table Doubling:
• Set a bound for λ (call it λ0)
• Whenever λ reaches this bound:

• Create a new table twice as big
• Then rehash all the data

• As before, operations usually take time O(1)
• But sometimes we copy the whole table
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Analysis of Table Doubling

 Suppose we reach 
a state with n items 
in a table of size m 
and that we have 
just completed a 
table doubling
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Analysis of Table Doubling, Cont’d

 Total number of insert 
operations needed to reach 
current table = copying work 
+ initial insertions of items
= 2n + n = 3n inserts

 Each insert takes expected 
time O(λ0) or O(1), so total 
expected time to build entire 
table is O(n)

 Thus, expected time per 
operation is O(1)

 Disadvantages of table 
doubling:

 Worst-case insertion time of 
O(n) is definitely achieved (but 
rarely)

 Thus, not appropriate for time 
critical operations
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Java Hash Functions

 Most Java classes implement 
the hashCode() method

 hashCode() returns an int

 Java’s HashMap class uses 
h(X) = X.hashCode() mod m

 h(X) in detail:
int hash = X.hashCode();

int index = (hash & 0x7FFFFFFF) % m;

 What hashCode() returns:
 Integer: 

 uses the int value
 Float: 

 converts to a bit representation 
and treats it as an int

 Short Strings: 
 37*previous + value of next 

character
 Long Strings: 

 sample of 8 characters; 
39*previous + next value
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hashCode() Requirements

 Contract for hashCode() method:
 Whenever it is invoked in the same object, it must return the 

same result
 Two objects that are equal (in the sense of .equals(...)) 

must have the same hash code
 Two objects that are not equal should return different hash 

codes, but are not required to do so (i.e., collisions are 
allowed)
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Hashtables in Java

 java.util.HashMap

 java.util.HashSet
 java.util.Hashtable

 Use chaining

 Initial (default) size = 101

 Load factor = λ0 = 0.75

 Uses table doubling 
(2*previous+1)

 A node in each chain looks 
like this:

hashCode key value next

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison
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Linear & Quadratic Probing

 These are techniques in which 
all data is stored directly within 
the hash table array

 Linear Probing
 Probe at h(X), then at

 h(X) + 1
 h(X) + 2
 …
 h(X) + i

 Leads to primary clustering
 Long sequences of filled cells

 Quadratic Probing
 Similar to Linear Probing in 

that data is stored within the 
table

 Probe at h(X), then at
 h(X)+1
 h(X)+4
 h(X)+9
 …
 h(X)+ i2

 Works well when
 λ < 0.5
 Table size is prime
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Universal Hashing

 Choose a hash function at random from a large parameterized 
family of hash functions (e.g., h(x) = ax + b, where a and b are 
chosen at random)

 With high probability, it will be just as good as any custom-
designed hash function you can come up with
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hashCode() and equals()

 We mentioned that the hash codes of two equal objects must 
be equal — this is necessary for hashtable-based data 
structures such as HashMap and HashSet to work correctly

 In Java, this means if you override Object.equals(), you 
had better also override Object.hashCode()

 But how???
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hashCode() and equals()

class Identifier {
   String name;
   String type;
   
   public boolean equals(Object obj) {
      if (obj == null) return false;
      Identifier id;
      try {
         id = (Identifier)obj;
      } catch (ClassCastException cce) {
         return false;
      }
      return name.equals(id.name) && type.equals(id.type);
   }
   
   

}
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hashCode() and equals()

class Identifier {
   String name;
   String type;
   
   public boolean equals(Object obj) {
      if (obj == null) return false;
      Identifier id;
      try {
         id = (Identifier)obj;
      } catch (ClassCastException cce) {
         return false;
      }
      return name.equals(id.name) && type.equals(id.type);
   }
   
   public int hashCode() {
      return 37 * name.hashCode() + 113 * type.hashCode() + 42;
   }
}
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hashCode() and equals()
class TreeNode {
   TreeNode left, right;
   String datum;  
   
   public boolean equals(Object obj) {
      if (obj == null || !(obj instanceof TreeNode)) return false;
      TreeNode t = (TreeNode)obj;
      boolean lEq = (left != null)?
         left.equals(t.left) : t.left == null;
      boolean rEq = (right != null)?
         right.equals(t.right) : t.right == null;
      return datum.equals(t.datum) && lEq && rEq;
   }
   

}
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hashCode() and equals()
class TreeNode {
   TreeNode left, right;
   String datum;  
   
   public boolean equals(Object obj) {
      if (obj == null || !(obj instanceof TreeNode)) return false;
      TreeNode t = (TreeNode)obj;
      boolean lEq = (left != null)?
         left.equals(t.left) : t.left == null;
      boolean rEq = (right != null)?
         right.equals(t.right) : t.right == null;
      return datum.equals(t.datum) && lEq && rEq;
   }
   
   public int hashCode() {
      int lHC = (left != null)? left.hashCode() : 298;
      int rHC = (right != null)? right.hashCode() : 377;
      return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;
   }
}
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Dictionary Implementations

Ordered Array
 Better than unordered array because Binary Search can be 

used

Unordered Linked List
 Ordering doesn’t help

Hashtables
 O(1) expected time for Dictionary operations


