(dp)

= ©
s S
<C © &
g®) o L
= 5
= =
- - &
L O
N

Abstract Data Types (ADTSs)

* A method for achieving
abstraction for data structures
and algorithms

e ADT = model + operations

e Describes what each
operation does, but not how it
does it

e An ADT is independent of its
implementation

e In Java, an interface corresponds
well to an ADT
= The interface describes the

operations, but says nothing at all
about how they are implemented

e Example: Stack interface/ADT

public interface Stack {

public
public
public
public
public

void push (Object x);
Object pop () ;
Object peek() ;
boolean isEmpty () ;
void clear() ;

Queues & Priority Queues

 ADT Queue e ADT PriorityQueue
= Operations: = Qperations:
void add(Object x); void insert (Object x);
Object poll(); Object getMax();
Object peek() ; Object peekAtMax();
boolean isEmpty () ; boolean isEmpty();
void clear(); void clear();
e \Where used: \Where used:
= Simple job scheduler (e.g., = Job scheduler for OS
print queue) = Event-driven simulation
= \Wide use within other = Can be used for sorting
algorithms = Wide use within other

algorithms

Sets
e ADT Set

= QOperations:
void insert (Object element) ;
boolean contains (Object element) ;
void remove (Object element) ;
boolean isEmpty () ;
void clear() ;

* Where used:
= Wide use within other algorithms

* Note: no duplicates allowed
= A “set” with duplicates is sometimes called a multiset or bag

Dictionaries

 ADT Dictionary (aka Map)

= Operations:
void insert (Object key, Object value) ;
void update (Object key, Object wvalue);
Object find(Object key) ;
void remove (Object key) ;
boolean isEmpty() ;
void clear() ;

e Think of: key = word; value = definition

* Where used:
= Symbol tables
= Wide use within other algorithms

Data Structure Building Blocks

* These are implementation “building blocks” that are
often used to build more-complicated data structures
= Arrays
= Linked Lists
+ Singly linked
¢ Doubly linked
» Binary Trees

= Graphs
+ Adjacency matrix
+ Adjacency list

Array Implementation of Stack

class ArrayStack implements Stack ({

private Object[] array; //Array that holds the Stack

private int index = 0; //First empty slot in Stack

public

ArrayStack (int maxSize)

{ array = new Object[maxSize]; }

public
public
public
public
public

void push (Object x) { array[index++] = x; }
Object pop() { return array[--index]; }
Object peek() { return array[index-1]; }
boolean isEmpty() { return index == 0; }
void clear() { index = 0; }

Question: What can go wrong?

max-1

index

!
o -~ NN W

O(1) worst-
case time for
each
operation

Linked List Implementation of Stack

class ListStack implements Stack ({

rivate Node head = null; //Head of list that
i O(1) worst-

holds the Stack :
Jyaelels Eas Eiene case time for

each operation
public void push(Object x) { head = new Node(x, head); } (but constant

public Object pop() { is larger)
Node temp = head;
head = head.next;

return temp.data;

}
public Object peek() { return head.data; }

public boolean isEmpty () { return head == null; }
public void clear() { head = null; }

head

Queue Implementations

* Possible implementations

Linked List
head last

l l

last

Array with head always at A[0]
(poll() becomes expensive)
(can overflow)

head last

l l

Array with wraparound
(can overflow)

e Recall: operations are

= For linked-list
+ All operations are O(1)

= For array with head at A[0]
¢ poll takes time O(n)
¢ Other ops are O(1)
¢ Can overflow

= For array with wraparound
+ All operations are O(1)
¢ Can overflow

A Queue From 2 Stacks

* Add pushes onto stack A
e Poll pops from stack B

* If B is empty, move all elements from stack A to stack B
e Some individual operations are costly, but still O(1) time

per operations over the long run

10

Dealing with Overflow

e For array implementations of stacks and queues, use
table doubling

* Check for overflow with each insert op

e |f table will overflow,
= Allocate a new table twice the size
= Copy everything over

e The operations that cause overflow are expensive, but
still constant time per operation over the long run
(proof later)

11

Goal: Design a Dictionary (aka Map)

Array implementation: Using an

* Operations array of (key,value) pairs

void insert (key, value)

void update (key, value) Unsorted Sorted

Object find (key) insert O(1) O(n)
void remove (key) update O(n) O(log n)
boolean isEmpty () find O(n) O(log n)
void clear() remove O(n) O(n)

n is the number of items
currently held in the dictionary

12

Hashing

ldea: compute an array index
via a hash function h

U is the universe of keys

h: U —[0,...,m-1]

where m = hash table size
Usually |U| is much bigger than
m, So collisions are possible
(two elements with the same
hash code)

e h should

* be easy to compute

= avoid collisions

» have roughly equal probability
for each table position

Typical situation:
U = all legal identifiers

Typical hash function:

h converts each letter to a
number, then compute a
function of these numbers

13

A Hashing Example

e Suppose each word below e How do we resolve collisions?
has the foIIowing hashCode = yse Chaining: each table
jan 7 position is the head of a list
feb 0 = for any particular problem, this
mar S might work terribly
apr 2
J.T?y i * In prgctice, using a good hash
iul 3 function, we can assume
aug 7 each position is equally likely
sep 2
5

oct

14

Analysis for Hashing with Chaining

* Analyzed in terms of load

factor A = n/m = | * Expected number of probes
(items in table)/(table size) for an unsuccessful search =
average number of items per

* We count the expected table position = n/m =\

number of probes (key

comparisons) o Expected number of probes
for a successful search =1 +
M2 = O(MN)

e Goal: Determine expected
number of probes for an
unsuccessful search e Worst case is O(n)

15

Table Doubling

* \WWe know each operation takes time O(\) where A=n/m

e So it gets worse as n gets large relative to m

» Table Doubling:
» Set a bound for A (call it ;)

« Whenever A reaches this bound:

» Create a new table twice as big
* Then rehash all the data

 As before, operations usually take time O(1)
« But sometimes we copy the whole table

16

Analysis of Table Doubling

e Suppose we reach
a state with n items
in a table of size m
and that we have
just completed a
table doubling

Copying Work

Everything has just n inserts
been copied

Half were copied n/2 inserts
previously

Half of those were n/4 inserts

copied previously

Total work

n+n/l2+n/4+ .. =

2n

17

Analysis of Table Doubling, Cont'd

e Total number of insert
operations needed to reach

* Disadvantages of table
doubling:

current table = copying work
+ initial insertions of items
=2n + n = 3n inserts

Each insert takes expected
time O(\,) or O(1), so total

expected time to build entire
table is O(n)

Thus, expected time per
operation is O(1)

= \Worst-case insertion time of
O(n) is definitely achieved (but
rarely)

» Thus, not appropriate for time
critical operations

18

Java Hash Functions

 Most Java classes implement ¢ \What hashCode () returns:
the hashCode () method = |nteger:
+ uses the int value

= Float:;

¢ converts to a bit representation
and treats it as an int

= Short Strings:

e hashCode () returns an int

e Java's HashMap class uses

h()() =X hashCode() mod m + 37*previous + value of next
' character
= | ong Strings:
* h(X) in detail: + sample of 8 characters;

NG
int hash = X.hashCode() ; 39*previous + next value

int index = (hash & Ox7FFFFFFF) % m;

19

hashCode () Requirements

e Contract for hashCode () method:

= Whenever it is invoked in the same object, it must return the
same result

= Two objects that are equal (in the sense of .equals(...))
must have the same hash code

= Two objects that are not equal should return different hash
codes, but are not required to do so (i.e., collisions are
allowed)

20

Hashtables in Java

java.util.HashMap

java.util.HashSet

java.util.Hashtable * Anode in each chain looks
like this:

Use chaining

hashCode | key | value | next

Initial (default) size = 101 \

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison

Load factor = A, =0.75

Uses table doubling
(2*previous+1)

21

Linear & Quadratic Probing

* These are techniques in which
all data is stored directly within

the hash table array

* Linear Probing

* Probe at h(X), then at
o h(X) + 1
¢ h(X) + 2
*
o h(X) +i

» Leads to primary clustering
* Long sequences of filled cells

e Quadratic Probing

= Similar to Linear Probing in
that data is stored within the
table

» Probe at h(X), then at
¢ h(X)+1
* h(X)+4
* h(X)+9
*
o h(X)+ i2
= Works well when
*+A<0.5
¢ Table size is prime

22

Universal Hashing

* Choose a hash function at random from a large parameterized
family of hash functions (e.g., h(x) = ax + b, where a and b are
chosen at random)

* With high probability, it will be just as good as any custom-
designed hash function you can come up with

23

hashCode () and equals ()

* \We mentioned that the hash codes of two equal objects must
be equal — this is necessary for hashtable-based data
structures such as HashMap and HashSet to work correctly

 |[n Java, this means if you override Object.equals (), you
had better also override Object.hashCode ()

e But how???

24

hashCode () and equals ()

class Identifier {
String name;
String type;

public boolean equals (Object obj) {

if (obj == null) return false;
Identifier id;
try {

id = (Identifier)obj;
} catch (ClassCastException cce) {
return false;

}
return name.equals (id.name) && type.equals (id. type) ;

25

hashCode () and equals ()

class Identifier {
String name;
String type;

public boolean equals (Object obj) {
if (obj == null) return false;
Identifier id;
try {
id = (Identifier)obj;
} catch (ClassCastException cce) {
return false;

}

return name.equals (id.name) && type.equals (id. type) ;
}

public int hashCode () {

return 37 * name.hashCode() + 113 * type.hashCode() + 42;
}

hashCode () and equals ()

class TreeNode {
TreeNode left, right;
String datum;

public boolean equals (Object obj) {

TreeNode t = (TreeNode)obj;

boolean 1lEq = (left !'= null)?
left.equals(t.left) : t.left == null;

boolean rEq = (right !'= null)?
right.equals(t.right) : t.right == null;

return datum.equals(t.datum) && lEq && rEq;

if (obj == null || !(obj instanceof TreeNode)) return false;

27

hashCode () and equals ()

class TreeNode {
TreeNode left, right;
String datum;

public boolean equals (Object obj) {
if (obj == null || !(obj instanceof TreeNode)) return false;
TreeNode t = (TreeNode)obj;
boolean 1lEq = (left !'= null)?
left.equals(t.left) : t.left == null;
boolean rEq = (right !'= null)?
right.equals(t.right) : t.right == null;
return datum.equals(t.datum) && lEq && rEq;

}

public int hashCode () {
int 1HC = (left !'= null)? left.hashCode() : 298;

int rHC = (right != null)? right.hashCode() : 377;
return 37 * datum.hashCode() + 611 * 1HC - 43 * rHC;

Dictionary Implementations

e Ordered Array

= Better than unordered array because Binary Search can be

used

* Unordered Linked List
» Ordering doesn'’t help

* Hashtables
= O(1) expected time for Dictionary operations

29

