
10/22/2009

1

STANDARD ADTS
Lecture 16
CS2110 – Fall 2009

Abstract Data Types (ADTs)
2

A method for achieving
abstraction for data
structures and algorithms

ADT = model + operations

In Java, an interface corresponds
well to an ADT
The interface describes the
operations, but says nothing at all
about how they are implemented

Describes what each
operation does, but not
how it does it

An ADT is independent of
its implementation

Example: Stack interface/ADT

public interface Stack {
public void push(Object x);
public Object pop();
public Object peek();
public boolean isEmpty();
public void clear();

}

Queues & Priority Queues
3

ADT Queue
Operations:

void add(Object x);

Object poll();

Object peek();

ADT PriorityQueue
Operations:

void insert(Object x);
Object getMax();
Object peekAtMax();
boolean isEmpty();

boolean isEmpty();

void clear();

Where used:
Simple job scheduler (e.g., print
queue)
Wide use within other algorithms

void clear();

Where used:
Job scheduler for OS
Event-driven simulation
Can be used for sorting
Wide use within other algorithms

A (basic) queue is “first in, first out”. A priority queue ranks objects: getMax()
returns the “largest” according to the comparator interface.

Sets
4

ADT Set
Operations:
void insert(Object element);
boolean contains(Object element);
void remove(Object element);
boolean isEmpty();
void clear();
for(Object o: mySet) { ... }

Where used:
Wide use within other algorithms

Note: no duplicates allowed
A “set” with duplicates is sometimes called a multiset or bag

A set makes no promises about ordering, but you can still iterate over it.

Dictionaries
5

ADT Dictionary (aka Map)
Operations:

void insert(Object key, Object value);
void update(Object key, Object value);
Object find(Object key);
void remove(Object key);void remove(Object key);
boolean isEmpty();
void clear();

Think of: key = word; value = definition
Where used:

Symbol tables
Wide use within other algorithms

A HashMap is a particular implementation of the Map interface

Data Structure Building Blocks
6

These are implementation “building blocks” that
are often used to build more-complicated data
structures

Arrays
Linked ListsLinked Lists

Singly linked
Doubly linked

Binary Trees
Graphs

Adjacency matrix
Adjacency list

10/22/2009

2

From interface to implementation

Given that we want to support some interface,
the designer still faces a choice

What will be the best way to implement this
interface for my expected type of use?

7

Choice of implementation can reflect many
considerations

Major factors we think about
Speed for typical use case
Storage space required

Array Implementation of Stack
8

class ArrayStack implements Stack {

private Object[] array; //Array that holds the Stack

private int index = 0; //First empty slot in Stack

public ArrayStack(int maxSize)

{ Obj t[Si] }

max-1

3
4

index

{ array = new Object[maxSize]; }

public void push(Object x) { array[index++] = x; }

public Object pop() { return array[--index]; }

public Object peek() { return array[index-1]; }

public boolean isEmpty() { return index == 0; }

public void clear() { index = 0; }

}

2
1
0

O(1) worst-
case time for
each
operation

Question: What can go wrong?
…. What if maxSize is too small?

Linked List Implementation of Stack
9

class ListStack implements Stack {

private Node head = null; //Head of list that

//holds the Stack

public void push(Object x) { head = new Node(x, head); }

public Object pop() {

N d t h d

O(1) worst-case
time for each
operation (but
constant is
larger)

Node temp = head;

head = head.next;

return temp.data;

}

public Object peek() { return head.data; }

public boolean isEmpty() { return head == null; }

public void clear() { head = null; }

}

head

Note that array
implementation can
overflow, but the
linked list version
cannot

Queue Implementations
10

Possible implementations Recall: operations are add,
poll, peek,…

For linked-list
All operations are O(1)

Linked Listhead last

p ()

For array with head at A[0]
poll takes time O(n)
Other ops are O(1)
Can overflow

For array with wraparound
All operations are O(1)
Can overflow

Array with wraparound
(can overflow)

head last

Array with head always at A[0]
(poll() becomes expensive)

(can overflow)

last

A Queue From 2 Stacks
11

Add pushes onto stack A
Poll pops from stack B
If B is empty, move all elements from stack A
to stack Bto stack B
Some individual operations are costly, but still
O(1) time per operations over the long run

Dealing with Overflow
12

For array implementations of stacks and
queues, use table doubling
Check for overflow with each insert op
If table will overflow,

Allocate a new table twice the size
Copy everything over

The operations that cause overflow are
expensive, but still constant time per operation
over the long run (proof later)

10/22/2009

3

Goal: Design a Dictionary (aka Map)
13

Operations

void insert(key, value)

void update(key, value)

Array implementation: Using an
array of (key,value) pairs

Unsorted Sorted
insert O(1) O(n)

d t O() O(l)Object find(key)

void remove(key)

boolean isEmpty()

void clear()

update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items currently held
in the dictionary

Hashing
14

Idea: compute an array
index via a hash function
h
U is the universe of keys
h: U → [0,…,m-1]
where m = hash table size

Typical situation:
U = all legal identifiers

Typical hash function:where m = hash table size
Usually |U| is much bigger
than m, so collisions are
possible (two elements
with the same hash code)
h should

be easy to compute
avoid collisions
have roughly equal probability for each
table position

Typical hash function:
h converts each letter to a number, then

compute a function of these numbers

Best hash functions are highly random
This is connected to cryptography
We’ll return to this in a few minutes

A Hashing Example
15

Suppose each word
below has the
following hashCode

jan 7

How do we resolve collisions?
use chaining: each table position
is the head of a listfeb 0

mar 5
apr 2
may 4
jun 7
jul 3
aug 7
sep 2
oct 5

is the head of a list
for any particular problem, this
might work terribly

In practice, using a good hash
function, we can assume each
position is equally likely

Analysis for Hashing with Chaining
16

Analyzed in terms of
load factor λ = n/m =
(items in table)/(table
size)

We count the expected

Expected number of probes for
an unsuccessful search =
average number of items per
table position = n/m = λ

We count the expected
number of probes (key
comparisons)

Goal: Determine
expected number of
probes for an
unsuccessful search

Expected number of probes for
a successful search = 1 + λ =
O(λ)

Worst case is O(n)

Table Doubling
17

We know each operation takes time O(λ) where λ
λ =n/m

So it gets worse as n gets large relative to m

Table Doubling:
• Set a bound for λ (call it λ0)
• Whenever λ reaches this bound:

• Create a new table twice as big
• Then rehash all the data

• As before, operations usually take time O(1)
• But sometimes we copy the whole table

Analysis of Table Doubling
18

Suppose we reach a state with n items in a
table of size m and that we have just
completed a table doubling

10/22/2009

4

Analysis of Table Doubling, Cont’d
19

Total number of insert
operations needed to reach
current table = copying work
+ initial insertions of items
= 2n + n = 3n inserts Disadvantages of table

doubling:

Each insert takes expected
time O(λ 0) or O(1), so total
expected time to build entire
table is O(n)

Thus, expected time per
operation is O(1)

Worst-case insertion time of O(n)
is definitely achieved (but rarely)

Thus, not appropriate for time
critical operations

Concept: “hash” codes
20

Definition: a hash code is the output of a
function that takes some input and maps it to a
pseudo-random number (a hash)

Input could be a big object like a string or an p g j g
Animal or some other complex thing
Same input always gives same out
Idea is that hashCode for distinct objects will have
a very low likelihood of collisions

Used to create index data structures for finding
an object given its hash code

Java Hash Functions
21

Most Java classes implement
the hashCode() method

hashCode() returns an int

Java’s HashMap class uses

What hashCode() returns:
Integer:
uses the int value
Float:
converts to a bit representation and

i iJava s HashMap class uses
h(X) = X.hashCode() mod m

h(X) in detail:
int hash = X.hashCode();
int index = (hash & 0x7FFFFFFF) % m;

treats it as an int
Short Strings:
37*previous + value of next character
Long Strings:
sample of 8 characters; 39*previous +
next value

hashCode() Requirements
22

Contract for hashCode() method:
Whenever it is invoked in the same object, it
must return the same result
Two objects that are equal (in the sense of
.equals(...)) must have the same hash code
Two objects that are not equal should return
different hash codes, but are not required to do
so (i.e., collisions are allowed)

Hashtables in Java
23

java.util.HashMap
java.util.HashSet
java.util.Hashtable

Use chaining

A node in each chain looks like
this:

Use chaining

Initial (default) size = 101

Load factor = ⎣0 = 0.75

Uses table doubling (2*previous+1)

hashCode key value next

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison

Linear & Quadratic Probing
24

These are techniques in
which all data is stored
directly within the hash
table array

Quadratic Probing
Similar to Linear Probing in that
data is stored within the table
Probe at h(X), then at
h(X)+1
h(X)+4

Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
Long sequences of filled cells

h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
⎣ < 0.5
Table size is prime

10/22/2009

5

Universal Hashing
25

In in doubt, choose a hash function at random
from a large parameterized family of hash
functions (e.g., h(x) = ax + b, where a and b
are chosen at random)

With high probability, it will be just as good as any
custom-designed hash function you dream up

Dictionary Implementations
26

Ordered Array
Better than unordered array because Binary
Search can be used

Unordered Linked List
Ordering doesn’t help

Hashtables
O(1) expected time for Dictionary operations

Aside: Comparators

When implementing a comparator interface
you normally must

Override compareTo() method
Override hashCode()

27

()
Override equals()

Easy to forget and if you make that mistake
your code will be very buggy

hashCode() and equals()
28

We mentioned that the hash codes of two equal
objects must be equal — this is necessary for
hashtable-based data structures such as HashMap
and HashSet to work correctly

In Java, this means if you override
Object.equals(), you had better also override
Object.hashCode()

But how???

hashCode() and equals()
29

class Identifier {

String name;

String type;

public boolean equals(Object obj) {

if (obj == null) return false;

Identifier id;

try {y

id = (Identifier)obj;

} catch (ClassCastException cce) {

return false;

}

return name.equals(id.name) && type.equals(id.type);

}

}

hashCode() and equals()
30

class Identifier {
String name;
String type;

public boolean equals(Object obj) {
if (obj == null) return false;
Identifier id;
try {try {

id = (Identifier)obj;
} catch (ClassCastException cce) {

return false;
}
return name.equals(id.name) && type.equals(id.type);

}

public int hashCode() {
return 37 * name.hashCode() + 113 * type.hashCode() + 42;

}
}

10/22/2009

6

hashCode() and equals()
31

class TreeNode {
TreeNode left, right;
String datum;

public boolean equals(Object obj) {
if (obj == null || !(obj instanceof TreeNode)) return false;
TreeNode t = (TreeNode)obj;
boolean lEq = (left != null)?

l ft l (t l ft) t l ft llleft.equals(t.left) : t.left == null;
boolean rEq = (right != null)?

right.equals(t.right) : t.right == null;
return datum.equals(t.datum) && lEq && rEq;

}

}

hashCode() and equals()
32

class TreeNode {
TreeNode left, right;
String datum;

public boolean equals(Object obj) {
if (obj == null || !(obj instanceof TreeNode)) return false;
TreeNode t = (TreeNode)obj;
boolean lEq = (left != null)?

l ft l (t l ft) t l ft llleft.equals(t.left) : t.left == null;
boolean rEq = (right != null)?

right.equals(t.right) : t.right == null;
return datum.equals(t.datum) && lEq && rEq;

}

public int hashCode() {
int lHC = (left != null)? left.hashCode() : 298;
int rHC = (right != null)? right.hashCode() : 377;
return 37 * datum.hashCode() + 611 * lHC - 43 * rHC;

}
}

Professional quality hash codes?
33

For large objects we often compute an MD5 hash
MD5 is the fifth of a series of standard “message digest”
functions
They are fast to compute (like an XOR over the bytes of the
object)
But they also use a cryptographic key: without the key you can’t
guess what the MD5 hashcode will beguess what the MD5 hashcode will be

For example key could be a random number you pick when your
program is launched
Or it could be a password

With a password key, an MD5 hash is a “proof of authenticity”
If object is tampered with, the hashcode will reveal it!

