
11/5/2010

1

DESIGNING, CODING,
AND DOCUMENTING
Lecture 15
CS2110 – Fall 2010

Designing and Writing a Program
2

Don't sit down at the terminal immediately and start
hacking

Design stage – THINK first
about the data you are working with

about the operations you will perform on it

about data structures you will use to represent it

about how to structure all the parts of your program so as to achieve abstraction and
encapsulation

Coding stage – code in small bits
test as you go

understand preconditions and postconditions

insert sanity checks (assert statements in Java are good)

worry about corner cases

Use Java API to advantage

The Design-Code-Debug Cycle
3

Design is faster than debugging (and more fun)
extra time spent designing reduces coding and debugging

Which is better?

Actually, should be more like this:

design code debug

design code debug

Divide and Conquer!
4

Break program into manageable parts that can
be implemented, tested in isolation

Define interfaces for parts to talk to each other –
d l t t (diti t diti)develop contracts (preconditions, postconditions)

Make sure contracts are obeyed
Clients use interfaces correctly
Implementers implement interfaces correctly (test!)

Key: good interface documentation

Pair Programming
5

Work in pairs
Pilot/copilot

pilot codes, copilot watches and makes
suggestions
pilot must convince copilot that code workspilot must convince copilot that code works
take turns

Or: work independently on different parts
after deciding on an interface

frequent design review
each programmer must convince the other
reduces debugging time

Test everything

Documentation is Code
6

Comments (esp. specifications) are as important as the
code itself

determine successful use of code
determine whether code can be maintained
creation/maintenance = 1/10creation/maintenance = 1/10

Documentation belongs in code or as close as possible
Code evolves, documentation drifts away
Put specs in comments next to code when possible
Separate documentation? Code should link to it.

Avoid useless comments
x = x + 1; //add one to x -- Yuck!
Need to document algorithm? Write a paragraph at the top.
Or break method into smaller, clearer pieces.

11/5/2010

2

Javadoc
7

An important Java documentation tool

Java source code
(many files)

Linked HTML web
pages

javadoc

Extracts documentation from classes, interfaces
Requires properly formatted comments

Produces browsable, hyperlinked HTML web
pages

8

How Javadoc is Produced
9

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {

thi (i iti lC it DEFAULT LOAD FACTOR)

indicates Javadoc comment

Javadoc keywords

this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();

}

can include HTML

Some Useful Javadoc Tags
10

@return description
Use to describe the return value of the method, if any
E.g., @return the sum of the two
intervals

@param parameter-name descriptionp p p
Describes the parameters of the method
E.g., @param i the other interval

@author name
@deprecated reason
@see package.class#member
{@code expression}

Puts expression in code font

Developing and Documenting an ADT
11

1. Write an overview – purpose of the ADT

2. Decide on a set of supported operationspp p

3. Write a specification for each operation

1. Writing an ADT Overview
12

Example abstraction: a closed interval [a,b] on
the real number line

[a,b] = { x | a ≤ x ≤ y }

Example overview:

/**
* An Interval represents a closed interval [a,b]
* on the real number line.
*/ Abstract

description of
the ADT’s

values
Javadoc
comment

11/5/2010

3

2. Identify the Operations
13

Enough operations for needed tasks

AAvoid unnecessary operations – keep it simple!
Don’t include operations that client (without access
to internals of class) can implement

3. Writing Method Specifications
14

Include
Signature: types of method arguments, return type
Description of what the method does (abstractly)

Good description (definitional)
/** Add two intervals. The sum of two intervals is

* a set of values containing all possible sums of

* two values, one from each of the two intervals.

*/

public Interval plus(Interval i);

Bad description (operational)
/** Return a new Interval with lower bound a+i.a,

* upper bound b+i.b.

*/

public Interval plus(Interval i);

Not abstract,
might as well

read the code…

3. Writing Specifications (cont’d)

15
Attach before methods of class
or interface

/** Add two intervals. The sum of two intervals is
* a set of values containing all possible sums of
* two values, one from each of the two intervals.
*
* @param i the other interval
* @return the sum of the two intervals
*/ Method overview

Method description
Additional tagged
clauses

Know Your Audience
16

Code and specs have a target audience
the programmers who will maintain and use it

Code and specs should be written
With enough documented detail so they can
understand it
While avoiding spelling out the obvious

Try it out on the audience when possible
design reviews before coding
code reviews

Consistency
17

A foolish consistency is the hobgoblin of little minds – Emerson

Pick a consistent coding style, stick with it
Make your code understandable by “little minds”

Teams should set common style

Match style when editing someone else’s code
Not just syntax, also design style

Simplicity
18

The present letter is a very long one, simply because I had no time to
make it shorter. –Blaise Pascal

Be brief. –Strunk & White

Applies to programming… simple code is
Easier and quicker to understand
More likely to be correct

Good code is simple, short, and clear
Save complex algorithms, data structures for where they are needed
Always reread code (and writing) to see if it can be made shorter, simpler,
clearer

11/5/2010

4

Choosing Names
19

Don’t try to document with variable names
Longer is not necessarily better

int searchForElement(
int[] array_of_elements_to_search,
int element_to_look_for);

int search(int[] a, int x);

Names should be short but suggestive
Local variable names should be short

Avoid Copy-and-Paste
20

Biggest single source of program errors
Bug fixes never reach all the copies
Think twice before using edit copy-and-paste function

Abstract instead of copying!
Write many calls to a single function rather than copying
the same block of code around

^V

But sometimes you have no choice
21

Example: SWING or SWT GUI code
Realistically, you simply have to use cut-and-paste!

In such situations, do try to understand what you In such situations, do try to understand what you
copied and “make it your own”

They wrote it first
But now you’ve adopted it and will love it and care for
it… maybe even rewrite it…

Design vs Programming by Example
22

Programming by example:
copy code that does something like what you want
hack it until it works

Problems:
inherit bugs in code
don't understand code fully
usually inherit unwanted functionality
code is a bolted-together hodge-podge

Alternative: design
understand exactly why your code works
reuse abstractions, not code templates

Avoid Premature Optimization
23

Temptations to avoid
Copying code to avoid overhead of abstraction mechanisms
Using more complex algorithms & data structures
unnecessarily
Violating abstraction barriersViolating abstraction barriers

Result:
Less simple and clear
Performance gains often negligible

Avoid trying to accelerate performance until
You have the program designed and working
You know that simplicity needs to be sacrificed
You know where simplicity needs to be sacrificed

Avoid Duplication
24

Duplication in source code creates an implicit
constraint to maintain, a quick path to failure

Duplicating code fragments (by copying)
Duplicating specs in classes and in interfaces
Duplicating specifications in code and in external documents
Duplicating same information on many web pages

Solutions:
Named abstractions (e.g., declaring functions)
Indirection (linking pointers)
Generate duplicate information from source (e.g., Javadoc!)

If you must duplicate:
Make duplicates link to each other so can find all clones

11/5/2010

5

Maintain State in One Place
25

Often state is duplicated for efficiency

But difficult to maintain consistency

Atomicity is the issue
if the system crashes while in the middle of an update, it
may be left in an inconsistent state
difficult to recover

Error Handling
26

It is usually an afterthought — it shouldn’t be

User errors vs program errors — there is a difference,
and they should be handled differentlyy y

Insert lots of ‘‘sanity checks’’ — the Java assert
statement is good way to do this

Avoid meaningless messages

Avoid Meaningless Messages
27

Design Patterns
28

Introduced in 1994 by Gamma, Helm, Johnson,
Vlissides (the “Gang of Four”)

Identified 23 classic software design patterns in Identified 23 classic software design patterns in
OO programming

More than 1/2 million copies sold in 14 languages

Design Patterns
29

•Abstract Factory groups object factories that have a common theme.
•Builder constructs complex objects by separating construction and representation.
•Factory Method creates objects without specifying the exact class to create.
•Prototype creates objects by cloning an existing object.
•Singleton restricts object creation for a class to only one instance.
•Adapter allows classes with incompatible interfaces to work together by wrapping its

i t f d th t f l d i ti lown interface around that of an already existing class.
•Bridge decouples an abstraction from its implementation so that the two can vary

independently.
•Composite composes one-or-more similar objects so that they can be manipulated

as one object.
•Decorator dynamically adds/overrides behaviour in an existing method of an object.
•Facade provides a simplified interface to a large body of code.
•Flyweight reduces the cost of creating and manipulating a large number of similar

objects.
•Proxy provides a placeholder for another object to control access, reduce cost, and

reduce complexity.

Design Patterns
30

• Chain of responsibility delegates commands to a chain of processing objects.
• Command creates objects which encapsulate actions and parameters.
• Interpreter implements a specialized language.
• Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
• Mediator allows loose coupling between classes by being the only class that

h d t il d k l d f th i th dhas detailed knowledge of their methods.
• Memento provides the ability to restore an object to its previous state (undo).
• Observer is a publish/subscribe pattern that allows a number of observer

objects to see an event.
• State allows an object to alter its behavior when its internal state changes.
• Strategy allows one of a family of algorithms to be selected on-the-fly at

runtime.
• Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
• Visitor separates an algorithm from an object structure by moving the hierarchy

of methods into one object.

11/5/2010

6

Design Patterns
31

• Chain of responsibility delegates commands to a chain of processing objects.
• Command creates objects which encapsulate actions and parameters.
• Interpreter implements a specialized language.
• Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
• Mediator allows loose coupling between classes by being the only class that

h d t il d k l d f th i th dhas detailed knowledge of their methods.
• Memento provides the ability to restore an object to its previous state (undo).
• Observer is a publish/subscribe pattern that allows a number of observer

objects to see an event.
• State allows an object to alter its behavior when its internal state changes.
• Strategy allows one of a family of algorithms to be selected on-the-fly at

runtime.
• Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
• Visitor separates an algorithm from an object structure by moving the hierarchy

of methods into one object.

Observer Pattern
32

Observable
changes from time to time
is aware of Observers, other entities that want to be
informed when it changes
but may not know (or care) what or how many
Observers there are

Observer
interested in the Observable
want to be informed when the Observable changes

Observer Pattern
33

Issues
does the Observable push information, or does the Observer pull it? (e.g., email
vs newsgroup)

whose responsibility is it to check for changes?

publish/subscribe paradigm

Observable

Observers

Observer Pattern
34

public interface Observer<E> {
void update(E event);

}

public class Observable<E> {
private Set<Observer<E>> observers = new HashSet<Observer<E>>();
boolean changed;

void addObserver(Observer<E> obs) {
observers.add(obs);

}

void removeObserver(Observer<E> obs) {
observers.remove(obs);

}

void notifyObservers(E event) {
if (!changed) return;
changed = false;
for (Observer<E> obs : observers) {

obs.update(event);
}

}
}

Visitor Pattern
35

A data structure provides a generic way to iterate over the
structure and do something at each element

The visitor is an implementation of interface methods that
are called at each elementare called at each element

The visited data structure doesn’t know (or care) what the
visitor is doing

There could be many visitors, all doing different things

Visitor Pattern
36 public interface Visitor<T> {

void visitPre(T datum);
void visitIn(T datum);
void visitPost(T datum);

}

public class TreeNode<T> {
TreeNode<T> left;
TreeNode<T> right;
T datum;

TreeNode(TreeNode<T> l, TreeNode<T> r, T d) {
left = l;
right = r;
datum = d;

}

void traverse(Visitor<T> v) {
v.visitPre(datum);
if (left != null) left.traverse(v);
v.visitIn(datum);
if (right != null) right.traverse(v);
v.visitPost(datum);

}
}

11/5/2010

7

No Silver Bullets
37

These are all rules of thumb; but there is no
panacea, and every rule has its exceptions

You can only learn by doing – we can't do it for You can only learn by doing we can t do it for
you

Following software engineering rules only makes
success more likely!

