
9/30/2010

1

SEARCHING,
SORTING, AND
ASYMPTOTIC COMPLEXITY
Lecture 12
CS2110 – Fall 2009

What Makes a Good Algorithm?
2

Suppose you have two possible algorithms or data
structures that basically do the same thing; which is
better?

W ll h t d b b tt ?Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

How do we measure time and space for an algorithm?

Sample Problem: Searching
3

static boolean find(int[] a, int item) {

for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;

Determine if a sorted array of integers contains a given integer
First solution: Linear Search (check each element)

}

return false;

}

static boolean find(int[] a, int item) {
for (int x : a) {

if (x == item) return true;
}
return false;

}

Sample Problem: Searching
4

static boolean find (int[] a, int item) {

int low = 0;

int high = a.length - 1;

while (low <= high) {

int mid = (low + high)/2;

Second
solution:
Binary
Search

if (a[mid] < item)

low = mid + 1;

else if (a[mid] > item)

high = mid - 1;

else return true;

}

return false;

}

Linear Search vs Binary Search
5

Which one is better?
Linear Search is easier to program

But Binary Search is faster… isn’t
it?

Simplifying assumption #1: Use
the size of the input rather than
the input itself

How do we measure to
show that one is faster
than the other

Experiment?

Proof?

Which inputs do we use?

For our sample search problem,
the input size is n+1 where n is the
array size

Simplifying assumption #2:
Count the number of “basic
steps” rather than computing
exact times

One Basic Step = One Time Unit
6

Basic step:
input or output of a scalar value

accessing the value of a scalar
variable, array element, or field of
an object

For a conditional, count
number of basic steps on the
branch that is executed

an object

assignment to a variable, array
element, or field of an object

a single arithmetic or logical
operation

method invocation (not counting
argument evaluation and execution
of the method body)

For a loop, count number of
basic steps in loop body times
the number of iterations

For a method, count number of
basic steps in method body
(including steps needed to
prepare stack-frame)

9/30/2010

2

Runtime vs Number of Basic Steps
7

But is this cheating?
The runtime is not the same as the
number of basic steps

Time per basic step varies depending on
computer, on compiler, on details of

d

Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

A t l lti li ticode…

Well…yes, in a way
But the number of basic steps is
proportional to the actual runtime

As n gets large, multiplicative
constants become less
important

Simplifying assumption #3:
Ignore multiplicative constants

Using Big-O to Hide Constants

We say f(n) is order of g(n) if f(n)
is bounded by a constant times
g(n)

Notation: f(n) is O(g(n))

Example: (n2 + n) is O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

8

Roughly, f(n) is O(g(n)) means that
f(n) grows like g(n) or slower, to
within a constant factor

"Constant" means fixed and
independent of n

So by definition, n2 + n is O(n2)
for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist constants
c and N such that for all n ≥ N, f(n) ≤ c·g(n)

A Graphical View

9

c·g(n)

f(n)

To prove that f(n) is O(g(n)):
Find an N and c such that f(n) δ c g(n) for all nεN

We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

N

Big-O Examples
10

Claim: 100 n + log n is O(n)

We know log n ≤ n for n ≥ 1

Claim: logB n is O(logA n)

since logB n is (logB A)(logA n)
�So 100 n + log n ≤ 101 n

for n ≥ 1

So by definition,

100 n + log n is O(n)

for c = 101 and N = 1

gB (gB)(gA)

Question: Which grows faster:
n or log n?

�
�

Big-O Examples
11

Let f(n) = 3n2 + 6n – 7
f(n) is O(n2)
f(n) is O(n3)
f(n) is O(n4)
…

() 4 l + 34 89

Only the leading term (the term
that grows most rapidly)
matters

g(n) = 4 n log n + 34 n – 89
g(n) is O(n log n)
g(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
a(n) is O(1)

Problem-Size Examples
12

Suppose we have a computing device that can
execute 1000 operations per second; how large a
problem can we solve?

1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21

9/30/2010

3

Commonly Seen Time Bounds
13

O(1) constant excellent

O(log n) logarithmic excellent

O(n) linear good

O(n log n) n log n pretty good

O(n2) quadratic OK

O(n3) cubic maybe OK

O(2n) exponential too slow

Worst-Case/Expected-Case Bounds
14

We can’t possibly
determine time bounds
for all possible inputs of
size n

Worst-case
Determine how much time is
needed for the worst possible input
of size n

Simplifying assumption
#4: Determine number
of steps for either

worst-case or
expected-case

of size n

Expected-case
Determine how much time is
needed on average for all inputs of
size n

Our Simplifying Assumptions
15

Use the size of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact times

Multiplicative constants and small inputs ignored (order-of, big-O)

Determine number of steps for either
worst-case
expected-case

These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching
16

Linear Search

static boolean find (int[] a, int item)
{

for (int i = 0; i < a.length; i++) {

Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;

if (a[i] == item) return true;

}

return false;

}

worst-case time = O(n)

if (a[mid] < item)
low = mid+1;

else if (a[mid] > item)
high = mid - 1;

else return true;
}
return false;

}

worst-case time = O(log n)

Comparison of Algorithms
17

Comparison of Algorithms
18

9/30/2010

4

Comparison of Algorithms
19

Analysis of Matrix Multiplication
20

Code for multiplying n-by-n matrices A and B:
By convention, matrix problems are measured in terms of n, the
number of rows and columns
Note that the input size is really 2n2, not n
Worst-case time is O(n3)()
Expected-case time is also O(n3)

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];
}

Remarks
21

Once you get the hang of this, you can quickly zero
in on what is relevant for determining asymptotic
complexity

For example, you can usually ignore everything that is
not in the innermost loop. Why?

Main difficulty:
Determining runtime for recursive programs

Why Bother with Runtime Analysis?
22

Computers are so fast these
days that we can do
whatever we want using just
simple algorithms and data
structures, right?
Well not really – data-

Problem of size n=103

A: 103 sec ≈ 17 minutes
A': 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

Well…not really data-
structure/algorithm
improvements can be a very
big win
Scenario:

A runs in n2 msec
A' runs in n2/10 msec
B runs in 10 n log n msec

Problem of size n=106

A: 109 sec ≈ 30 years
A': 108 sec ≈ 3 years
B: 2·105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

Algorithms for the Human Genome
23

Human genome
= 3.5 billion nucleotides
~ 1 Gb

@1 base-pair
instruction/⎧sec

n2 → 388445 years
n log n → 30.824 hours
n → 1 hour

Limitations of Runtime Analysis

Big-O can hide a very
large constant

Example: selection
Example: small problems

Your program may not
be run often enough to
make analysis worthwhile

Example

24

a p e: s a p ob e s

The specific problem you
want to solve may not be
the worst case

Example: Simplex method
for linear programming

Example:
one-shot vs. every day
You may be analyzing

and improving the wrong
part of the program

Very common situation
Should use profiling tools

9/30/2010

5

Summary
25

Asymptotic complexity
Used to measure of time (or space) required by an
algorithm
Measure of the algorithm, not the problem

Searching a sorted array
Linear search: O(n) worst case timeLinear search: O(n) worst-case time
Binary search: O(log n) worst-case time

Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

More later with sorting and graph algorithms

