
9/30/2010

1

GUI DYNAMICS
Lecture 11
CS2110 – Fall 2009

GUI Statics and GUI Dynamics

Statics: what’s drawn on
the screen

Components
buttons, labels, lists, sliders,
menus, ...

Containers components

Dynamics: user interactions
Events
button-press, mouse-click,
key-press, ...
Listeners: an object that

d t t

2

Containers: components
that contain other
components

frames, panels, dialog
boxes, ...

Layout managers: control
placement and sizing of
components

responds to an event
Helper classes
Graphics, Color, Font,
FontMetrics, Dimension, ...

Dynamics Overview
3

Dynamics = causing and responding to actions
What actions?

Called events: mouse clicks, mouse motion, dragging, keystrokes
We would like to write code (a handler) that is invoked when an
event occurs so that the program can respond appropriatelyevent occurs so that the program can respond appropriately
In Java, you can intercept events by providing an object that
“hears” the event – a listener

What objects do we need to know about?
Events
Event listeners

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);

public Intro() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new FlowLayout(FlowLayout.LEFT)); //set layout manager
add(myButton); //add components

Brief Example Revisited
4

add(myButton); //add components
add(label);
label.setPreferredSize(new Dimension(60, 10));

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
label.setText("Count: " + count);

}
});

pack();
setVisible(true);

}

public static void main(String[] args) {
new Intro();

}
}

Brief Example Revisited
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);

public Intro() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new FlowLayout(FlowLayout.LEFT)); //set layout manager
add(myButton); //add components

•5

add(myButton); //add components
add(label);
label.setPreferredSize(new Dimension(60, 10));

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
label.setText("Count: " + count);

}
});

pack();
setVisible(true);

}

public static void main(String[] args) {
new Intro();

}
}

The Java Event Model
6

Timeline
User or program does something to a component

clicks on a button, resizes a window, ...
Java issues an event object describing the event
A special type of object (a listener) “hears” the event

Th li t h th d th t “h dl ” th tThe listener has a method that “handles” the event
The handler does whatever the programmer programmed

What you need to understand
Events: How components issue events
Listeners: How to make an object that listens for events
Handlers: How to write a method that responds to an event

9/30/2010

2

Events: How your application learns when
something interesting happens

Basic idea: You register a
listener and Java calls it

The argument is an “event”: a
normal Java object

Events are normally created by the
Java runtime system

ActionEvent
AdjustmentEvent
ComponentEvent
ContainerEvent
FocusEvent
HierarchyEvent
InputEvent

7

Java runtime system

You can create your own, but this is
unusual

Normally events are associated
with a component

Most events are in java.awt.event
and javax.swing.event

All events are subclasses of
AWTEvent

InputMethodEvent
InvocationEvent
ItemEvent
KeyEvent
MouseEvent
MouseWheelEvent
PaintEvent
TextEvent
WindowEvent

Types of Events
8

Each Swing Component can generate one or more types
of events

The type of event depends on the component
Clicking a JButton creates an ActionEvent
Clicking a JCheckbox creates an ItemEventC c g a JC ec bo c ea es a te e t

The different kinds of events include different information
about what has occurred

All events have method getSource() which returns the object
(e.g., the button or checkbox) on which the Event initially occurred
An ItemEvent has a method getStateChange() that
returns an integer indicating whether the item (e.g., the checkbox)
was selected or deselected

Event Listeners
9

ActionListener, MouseListener,
WindowListener, ...

Listeners are Java interfaces
Any class that implements that interface can be used as a
listener

To be a listener, a class must implement the interface
Example: an ActionListener must contain a method
public void actionPerformed(ActionEvent e)

Implementing Listeners
10

Which class should be a listener?
Java has no restrictions on this, so any class that implements
the listener will work

T i l h iTypical choices
Top-level container that contains whole GUI
public class GUI implements ActionListener

Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

Anonymous classes created on the spot
b.addActionListener(new ActionListener() {...});

Listeners and Listener Methods
11

When you implement an interface, you must implement
all the interface’s methods

Interface ActionListener has one method:
void actionPerformed(ActionEvent e)

Interface MouseListener has five methods:Interface MouseListener has five methods:
void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)
void mousePressed(MouseEvent e)
void mouseReleased(MouseEvent e)

Interface MouseMotionListener has two methods:
void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

Registering Listeners
12

How does a component know which listener to use?

You must register the listeners
This connects listener objects with their source objects
Syntax: component.addTypeListener(Listener)

You can register as many listeners as you likeg y y

Example:

b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

count++;
label.setText(generateLabel());

}
});

9/30/2010

3

Example 1: The Frame is the Listener
13 import javax.swing.*; import java.awt.*; import java.awt.event.*;

public class ListenerExample1 extends JFrame implements ActionListener {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);
public static void main(String[] args) {

JFrame f = new ListenerExample1();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f t i ibl (t)f.setVisible(true);

}
public ListenerExample1() {

setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(this);

}
public void actionPerformed(ActionEvent e) {

count++;
label.setText("Count: " + count);

}
}

Example 2: The Listener is an Inner Class

14 import javax.swing.*; import java.awt.*; import java.awt.event.*;

public class ListenerExample2 extends JFrame {

private int count;

private JButton b = new JButton("Push Me!");

private JLabel label = new JLabel("Count: " + count);

class Helper implements ActionListener {

public void actionPerformed(ActionEvent e) {

count++;

l b l ()label.setText("Count: " + count);
}

}

public static void main(String[] args) {

JFrame f = new ListenerExample2();

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.setSize(200,100); f.setVisible(true);

}

public ListenerExample2() {

setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addActionListener(new Helper());

}

}

Example 3: The Listener is an Anonymous Class

15
import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample3 extends JFrame {

private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);
public static void main (String[] args) {

JFrame f = new ListenerExample3();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); f.setVisible(true);

}}
public ListenerExample3() {

setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent e) {
count++;
label.setText("Count: " + count);

}
});

}
}

Adapters
16

Some listeners (e.g., MouseListener) have lots of
methods; you don’t always need all of them

For instance, you may be interested only in mouse clicks
For this situation, Java provides adapters

An adapter is a predefined class that implements all the p p p
methods of the corresponding Listener

Example: MouseAdapter is a class that implements all the
methods of interfaces MouseListener and
MouseMotionListener

The adapter methods do nothing
To easily create your own listener, you extend the adapter
class, overriding just the methods that you actually need

Using Adapters
17 import javax.swing.*; import javax.swing.event.*;

import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame {

private int count; private JButton b = new JButton("Mouse Me!");
private JLabel label = new JLabel("Count: " + count);
class Helper extends MouseAdapter {

public void mouseEntered(MouseEvent e) {
count++;
label.setText("Count: " + count);

}
}
public static void main(String[] args) {

JFrame f = new AdapterExample();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); f.setVisible(true);

}
public AdapterExample() {

setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addMouseListener(new Helper());

}
}

Notes on Events and Listeners
18

A single component can have many listeners

Multiple components can share the same listener
Can use event.getSource() to identify the component
that generated the event

For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial
/
uiswing/events/

For more information on designing GUIs, see
http://java.sun.com/docs/books/tutorial
/uiswing/

9/30/2010

4

Aside: On Anonymous Classes

An amazingly powerful idea
In effect, you can create an object, or a static class in
one “context” where it can see the variables and
methods of its creating class

19

Then pass it to some other context entirely and invoke it,
perhaps much later. It can still access the variables and
methods it was able to see when it was created even if
the context that created it is no longer active!
Sometimes called a closure in the programming
languages community

Why are anonymous classes valuable?

Precisely because they “remember” the context in
which they were created

Value variables are copied
Reference variables: the reference is retained

20

Let’s see why this benefits us by revisiting an
example we used on Tuesday

FlowLayout Example from Tuesday

21 class S1GUI {
public class ListenerExample1 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);

p blic S1GUI() {public S1GUI() {
JFrame f = new ListenerExample1();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)

f.add(new JButton("Button " + b));
f.setVisible(true);

}
}

… now with a ButtonClick handler

22 import javax.swing.*;
import java.awt.*;

public class Statics1 {
public static void main(String[] args) {

new S1GUI();
}

}

class S1GUI {
public class ListenerExample1 extends JFrame implements ActionListener {

public int count;
public JButton b = new JButton("Push Me!");

bli JL b l l b l JL b l("C t " + t)
The anonymous inner method

public JLabel label = new JLabel("Count: " + count);
}

public S1GUI() {
JFrame f = new ListenerExample1();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)
{

Jbutton myButton = new JButton(“Button " + b);
myButton.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

f.count++;
f.label.setText("[" + b + "]: Count " + count);

}
});
f.add(myButton);

}
f.setVisible(true);

}
}

y
can access the fields of the

Jframe….

… and even the variables
that were active when the

class was instantiated!

Whoa! What was “b” doing?

Inside the inner method, b is acting like a parameter
In fact Java makes a copy of b, which is why it retains
the value it had when the anonymous class was created
via new (otherwise everyone would think b = 9!)

23

Java also makes copies of pointers to objects
referenced in the method such as “this” and “label”,
which is why it can access “count” (which “means”
this.count) and why it can call label.setlabel().

Once you get the idea it all makes a lot of sense
And this code is very easy to read, too…

… But you can also take these things one step too far

24 import javax.swing.*;
import java.awt.*;

public class Statics1 {
public static void main(String[] args) {

new S1GUI();
}

}

class S1GUI {
public class ListenerExample1 extends JFrame implements ActionListener {

public int count;
public JButton b = new JButton("Push Me!");

Debatable whether this code
is at all comprehensible but

public JButton b = new JButton(Push Me!);
public JLabel label = new JLabel("Count: " + count);

}

public S1GUI() {
JFrame f = new ListenerExample1();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)
{

f.add((new JButton(“Button " + b)).addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

f.count++;
f.label.setText("[" + b + "]: Count " + count);

}
});

}
f.setVisible(true);

}
}

it certainly is compact!

9/30/2010

5

GUI Drawing and Painting
25

For a drawing area, extend JPanel and override the method
public void paintComponent(Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly – instead, request that the
system redraw the panel at the next convenient opportunity by
calling myPanel.repaint()

repaint() requests a call paintComponent() “soon”
repaint(ms) requests a call within ms milliseconds

Avoids unnecessary repainting
16ms is a reasonable value

Java Graphics
26

The Graphics class has methods for colors, fonts, and
various shapes and lines

setColor(Color c)
drawOval(int x, int y, int width, int height)
fillOval(int x, int y, int width, int height)
d i (i 1 i 1 i 2 i 2)drawLine(int x1, int y1, int x2, int y2)
drawString(String str, int x, int y)

Take a look at
java.awt.Graphics (for basic graphics)
java.awt.Graphics2D (for more sophisticated control)
The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/

examples on the web site

