
9/16/2010

1

TREES
Lecture 9
CS2110 – Fall 2009

Tree Overview
2

Tree: recursive data structure 
(similar to list)

Each cell may have zero or 
more successors (children)
Each cell has exactly one 
predecessor (parent) except 

5

4

7 8 9

2

5

4

7 8

2

p (p ) p
the root, which has none
All cells are reachable from 
root

Binary tree: tree in which each 
cell can have at most two 
children: a left child and a 
right child

General tree Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

Tree Terminology
3

M is the root of this tree

G is the root of the left subtree of M

B, H, J, N, and S are leaves

N is the left child of P; S is the right 
child

P is the parent of N

M

G W

P is the parent of N

M and G are ancestors of D

P, N, and S are descendants of W

Node J is at depth 2 (i.e., depth = 
length of path from root = number of 
edges)

Node W is at height 2 (i.e., height = 
length of longest path to a leaf)

A collection of several trees is called 
a ...?

PJD

NHB S

Class for Binary Tree Cells
4

class TreeCell<T> {
private T datum;
private TreeCell<T> left, right;

public TreeCell(T x) { datum = x; }
public TreeCell(T x, TreeCell<T> lft,

T C ll<T> t) {TreeCell<T> rgt) {
datum = x;
left = lft;
right = rgt;

}
more methods: getDatum, setDatum,
getLeft, setLeft, getRight, setRight

}

... new TreeCell<String>("hello") ...

Class for General Trees
5

class GTreeCell {

private Object datum;

private GTreeCell left;

private GTreeCell sibling;

appropriate getter and

5

4

7 8 9

2

7 8 3 1

General 
tree

setter methods

}

7 8 3 1

5

4

7 8 9

2

7 8 3 1

Tree 
represented 
using 
GTreeCell

Parent node points directly 
only to its leftmost child
Leftmost child has pointer to 
next sibling, which points to 
next sibling, etc.

Applications of Trees
6

Most languages (natural and computer) have a 
recursive, hierarchical structure

This structure is implicit in ordinary textual 
representation

Recursive structure can be made explicit by 
representing sentences in the language as trees: 
Abstract Syntax Trees (ASTs)

ASTs are easier to optimize, generate code from, etc. 
than textual representation

A parser converts textual representations to AST



9/16/2010

2

Example
7

Expression grammar:
E → integer

E → (E + E)

In textual representation

-34 -34

(2 + 3) +

Text AST Representation

In textual representation
Parentheses show hierarchical 
structure

In tree representation
Hierarchy is explicit in the 
structure of the tree

(2 + 3) +

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Recursion on Trees
8

Recursive methods can be written to operate on trees in 
an obvious way

Base caseBase case
empty tree
leaf node

Recursive case
solve problem on left and right subtrees
put solutions together to get solution for full tree

Searching in a Binary Tree
9

public static boolean treeSearch(Object x,
TreeCell node) {

if (node == null) return false;
if (node.datum.equals(x)) return true;
return treeSearch(x, node.left) ||

treeSearch(x, node.right);
}

9

8 3 5 7

2

0

Analog of linear search in lists: 
given tree and an object, find out if 
object is stored in tree
Easy to write recursively, harder to 
write iteratively

Binary Search Tree (BST)
10

If the tree data are ordered – in any subtree,
All left descendents of node come before node
All right descendents of node come after node

This makes it much faster to search
2

0 3 7 9

5

8

public static boolean treeSearch (Object x, TreeCell node) {
if (node == null) return false;
if (node.datum.equals(x)) return true;
if (node.datum.compareTo(x) > 0) 

return treeSearch(x, node.left);
else return treeSearch(x, node.right);

}

Building a BST
11

To insert a new item
Pretend to look for the item

Put the new node in the place 
where you fall off the tree

This can be done using 

jan

feb mar

apr mayjunThis can be done using 
either recursion or 
iteration

Example
Tree uses alphabetical order

Months appear for insertion in 
calendar order

apr mayjun

jul

What Can Go Wrong?
12

A BST makes searches very 
fast, unless…

Nodes are inserted in 
alphabetical order

jan

feb

apr

In this case, we’re basically 
building a linked list (with some 
extra wasted space for the 
left fields that aren’t being 
used)

BST works great if data 
arrives in random order

mar

may

jun

jul



9/16/2010

3

Printing Contents of BST
13

Because of the 
ordering rules for a 
BST, it’s easy to print 
the items in 

/**
* Show the contents of the BST in
* alphabetical order.
*/
public void show () {

show(root);
System.out.println();

alphabetical order
Recursively print everything 
in the left subtree

Print the node

Recursively print everything 
in the right subtree

}

private static void show(TreeNode node) {
if (node == null) return;
show(node.lchild);
System.out.print(node.datum + " ");
show(node.rchild);

}

Tree Traversals

“Walking” over the whole 
tree is a tree traversal

This is done often enough that 
there are standard names

The previous example is an 

There are other standard 
kinds of traversals

Preorder traversal
Process node
Process left subtree
Process right subtree

14

The previous example is an 
inorder traversal

Process left subtree
Process node
Process right subtree

Note: we’re using this for 
printing, but any kind of 
processing can be done

Postorder traversal
Process left subtree
Process right subtree
Process node

Level-order traversal
Not recursive
Uses a queue

Some Useful Methods
15

//determine if a node is a leaf
public static boolean isLeaf(TreeCell node) {

return (node != null) && (node.left == null)
&& (node.right == null);

}

//compute height of tree using postorder traversal
public static int height(TreeCell node) {

if (node == null) return -1; //empty tree
if (isLeaf(node)) return 0;
return 1 + Math.max(height(node.left),

height(node.right));
}

//compute number of nodes using postorder traversal
public static int nNodes(TreeCell node) {

if (node == null) return 0;
return 1 + nNodes(node.left) + nNodes(node.right);

}

Useful Facts about Binary Trees
16

2d =  maximum number 
of nodes at depth d

If height of tree is h
Minimum number of nodes in tree = h 

5

4 2

depth

0

1

2+ 1
Maximum number of nodes in tree = 
20 + 21 + … + 2h =  2h+1 – 1

Complete binary tree
All levels of tree down to a certain 
depth are completely filled

7 8 0 42

5

2

4
Height 2, 
minimum number of nodes

Height 2, 
maximum number of nodes

Tree with Parent Pointers
17

In some applications, it is useful 
to have trees in which nodes 
can reference their parents 5

4 2

Analog of doubly-linked lists
4

7 8

2

Things to Think About
18

What if we want to 
delete data from a BST?

A BST works great as 

jan

feb mar

A BST works great as 
long as it’s balanced

How can we keep it 
balanced?

apr mayjun

jul



9/16/2010

4

Suffix Trees
19

• Given a string s, a suffix tree for s is a tree such that

• each edge has a unique label, which is a nonnull substring of s
• any two edges out of the same node have labels beginning with 

different characters
• the labels along any path from the root to a leaf concatenatethe labels along any path from the root to a leaf concatenate 

together to give a suffix of s
• all suffixes are represented by some path
• the leaf of the path is labeled with the index of the first character 

of the suffix in s

• Suffix trees can be constructed in linear time

Suffix Trees
20

a cadabra$
bra ra

$dabra$

abracadabra$

cadabra$

cadabra$

cadabra$ cadabra$dabra$

$

$ $
$ bra

Suffix Trees
21

Useful in string matching algorithms (e.g., longest 
common substring of 2 strings)
Most algorithms linear time
Used in genomics (human genome is ~4GB)

Huffman Trees
22

0

0

0 0

0 0

11

1 1

1

1e

e tst a

4063 26197
sa

4063 26197

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521

Huffman Compression of “Ulysses”
23

' '  242125  00100000   3  110
'e'  139496  01100101   3  000
't'   95660  01110100   4  1010
'a'   89651  01100001   4  1000
'o'   88884  01101111   4  0111
'n'   78465  01101110   4  0101
'i'   76505  01101001   4  0100
's'   73186  01110011   4  0011
'h'   68625  01101000   5  11111
'r' 68320 01110010 5 11110r    68320  01110010   5  11110
'l'   52657  01101100   5  10111
'u'   32942  01110101   6  111011
'g'   26201  01100111   6  101101
'f'   25248  01100110   6  101100
'.'   21361  00101110   6  011010
'p'   20661  01110000   6  011001

...

'7'      68  00110111  15  111010101001111
'/'      58  00101111  15  111010101001110
'X'      19  01011000  16  0110000000100011
'&'       3  00100110  18  011000000010001010
'%'       3  00100101  19  0110000000100010111
'+'       2  00101011  19  0110000000100010110
original size   11904320
compressed size  6822151
42.7% compression

23

BSP Trees
24

BSP = Binary Space Partition

Used to render 3D images composed of polygons

Each node n has one polygon p as data

Left subtree of n contains all polygons on one side of p

Right subtree of n contains all polygons on the other side of p

Order of traversal determines occlusion!



9/16/2010

5

Tree Summary
25

A tree is a recursive data structure
Each cell has 0 or more successors (children)
Each cell except the root has at exactly one predecessor 
(parent)
All cells are reachable from the rootAll cells are reachable from the root

A cell with no children is called a leaf

Special case: binary tree
Binary tree cells have a left and a right child
Either or both children can be null

Trees are useful for exposing the recursive structure of 
natural language and computer programs


