LISTS & TREES

Lecture 8

CS2110 — Fall 2008

List Overview

Purpose

Maintain an ordered set of elements (with possible duplication)

Common operations

Create a list

Access elements of a list sequentially
Insert elements into a list

Delete elements from a list

Arrays

Random access :)
Fixed size: cannot grow or shrink after creation : (

Linked Lists

No random access : (
Can grow and shrink dynamically :)

A Simple List Interface
I

List

Data Structures

(] Arrqy Linked list

= uses a sequence of linked cells

= we will define a class ListCell from
which we build lists

Must specify array size at
creation

Insert, delete require moving
elements

Must copy array to a larger

array when it gets full 24 87

24 | -7 (87 (/8

empty

-7
y z

List Terminology

s
1 Head = first element
of the list

1 Tail = rest of the list

33| e '|10 e -/ | @ 1 .——)’84 ® , /

head tail

Class ListCell

class ListCell<T> {
private T datum;
private ListCell<T> next;

public ListCell(T datum, ListCell<T> next){
this.datum = datum;
this_.next = next;

}

public T getDatum() { return datum; }

public ListCell<T> getNext() { return next; }
public void setDatum(T obj) { datum = obj; }
public void setNext(ListCell<T> c) { next = c; }

Building a Linked List
I

o ListCell<Integer> c c ListCell’]
O = new T
ListCell<Integer>(new
Integer(24), null); g

Integer t = new Integer(24);|3ljsu:ew
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell<Integer> p =
new ListCell<Integer>(t,
new ListCell<Integer>(s,
new ListCell<Integer>(e, null)));

Building a Linked List (cont’d)

2] Another way:
Integer t = new Integer(24);
Integer s new Integer(-7);

Integer e new Integer(87);

//Can also use "autoboxing" ///////////
p [ListCell: \

ListCell<Integer> p
new ListCell<Integer>(e, null);
new ListCell<Integer>(s, p); -

P
p = new ListCell<Integer>(t, p);

Note: p = new ListCell<Integer>(s,p);
does not create a circular list!

Accessing List Elements

N p ListCell:

01 Linked Lists are
sequential-access data
structures.

To access contents of cell n in
sequence, you must access cells O
. nN-1

o Accessing data in first Writing to fields -

cell: p.getDatum() Incellscanbe

. . done the same way
o1 Accessing data in L
= Update data in first cell:

secotnl\ld i?)llz (Datun() p.setDatum(new Integer(53));
_getNext() .getDatum .
P-9 9 = Update data in second cell:

71 Accessing next field in p.getNext() .setbatum(new

second cell: Integer(53));

p.getNext() .getNext() = Chop off third cell:
p.getNext() .setNext(null);

Access Example: Linear Search

// Here 1s another version. Why does this work?
public static boolean search(Object x, ListCell c) {
for (; ¢ '= null; c = c.getNext()) {
1IT (c.getDatum() .equals(x)) return true;

ks

return false;

Note: we’ ve left off the <Integer> for simplicity

// Scan list looking for x, return true 1t found
public static boolean search(Object x, ListCell c) {
for (ListCell Ic = c; Ic = null; Ic = lc.getNext()) {
iIT (Ic.getbDatum() .equals(x)) return true;
+

return false;

Recursion on Lists

Recursion can be done on lists
Similar to recursion on integers

Almost always
Base case: empty list

Recursive case: Assume you can solve problem on the tail,
use that in the solution for the whole list

Many list operations can be implemented very simply
by using this idea

Although some are easier to implement using iteration

Recursive Search

Base case: empty list

return false

Recursive case: non-empty list
if data in first cell equals object x, return true

else return the result of doing linear search on the tail

Recursive Search

public static boolean search(Object x, ListCell c) {
iIT (c == null) return false;
IT (c.getDatum() .equals(x)) return true;
return search(x, c.getNext());

public static boolean search(Object x, ListCell c) {
return ¢ = null &&
(c.getDatum() .equals(x) || search(x, c.getNext()));

Reversing a List

Given a list, create a new list with elements in reverse
order
Intuition: think of reversing a pile of coins

public static ListCell reverse(ListCell c) {
ListCell rev = null;
for (; ¢ '= null; c = c.getNext()) {

rev = new ListCell(c.getDatum(), rev);

}

return rev;

}

It may not be obvious how to write this recursively...

Recursive Reverse

public static ListCell reverse(ListCell c) {
return reverse(c, null);

}

private static ListCell reverse(ListCell c, ListCell r) {
iIT (c == null) return r;
return reverse(c.getNext(),
new ListCell(c.getDatum(), r));

-

List with Header

Sometimes it is preferable to have a List class distinct
from the ListCell class

The List object is like a head element thy

even if list itself is%

class List {
protected ListCell head;
public List(ListCell ¢) {
head = c;

by
public ListCell getHead()

Variations on List with Header

Header can also
keep other info

Reference to last cell of list

Number of elements in list

~
~

Search/insertion/ deletion _
as instance methods

Special Cases to Worry About

T
11 Empty list
- add
= find
= delete
o Front of list
o insert
0 End of list
= find
= delete

1 Lists with just one element

Example: Delete from a List
o F
1 Delete first occurrence of x from a list

1 Intuitive idea of recursive code:

o If list is empty, return null
o If datum at head is x, return tail

o1 Otherwise, return list consisting of

lterative Delete

‘head: [ListCeII:/]

Two steps:

| Ist: / Z
Locate cell that is the P « current

predecessor of cell to be
deleted (i.e., the cell containing

x)
Keep two cursors, scout and «—— Scout
current «— current
scout is always one cell ahead
of current
Stop when scout finds cell
containing x, or falls off end «—— Scout
of list

If scout finds cell, update next

field of current cell to splice out

object x from list

Note: Need special —]

case for x in first cell
delete 36 from list

lterative Code for Delete

public void delete (Object x) {

iIT (head == null) return;

1IT (head.getDatum().equals(x)) { 7//x in Tirst cell?
head = head.getNext();
return;

+

ListCell current = head;

ListCell scout = head.getNext();

while ((scout != null) && !scout.getDatum().equals(x)) {
current = scout;
scout = scout.getNext();

+

IT (scout = null) current.setNext(scout.getNext());
return;

Doubly-Linked Lists

71 In some applications, it is convenient to have a
ListCel I that has references to both its

predecessor and its successor in the list.
class DLLCell {

private Object datum;
private DLLCell next;
private DLLCell prev;

Doubly-Linked vs Singly-Linked

Advantages of doubly-linked over singly-linked lists

some things are easier — e.g., reversing a doubly-
linked list can be done simply by swapping the
previous and next fields of each cell

don't need the scout to delete

Disadvantages
doubly-linked lists require twice as much space

insert and delete take more time

Java Arraylist

“Extensible array”
Starts with an initial capacity = size of underlying array

If you try to insert an element beyond the end of the array, it will
allocate a new (larger) array, copy everything over invisibly

Appears infinitely extensible

Advantages:
random access in constant time
dynamically extensible

Disadvantages:
Allocation, copying overhead

24

