LISTS & TREES

Lecture 8
CS2110 - Fall 2008

A Simple List Interface
[|

List Terminology

| S

01 Head = first element
of the list

0 Tail = rest of the list

Bl [[[F—F [I

head tail

9/16/2010

List Overview
[

o1 Purpose

I Maintain an ordered set of elements (with possible duplication)

o Common operations
o Create a list
o Access elements of a list sequentially
o Insert elements into a list
o Delete elements from a list

o Arrays
o Random access :)
o Fixed size: cannot grow or shrink after creation : (

o Linked Lists
© No random access : (
i Can grow and shrink dynamically :)

List Data Structures
[—

o Array Linked list
O Must specify array size at = uses a sequence of linked cells
creation = we will define a class ListCell from

)) which we build lists
o Insert, delete require moving

elements
o Must copy array to a larger
array when it gets full

af7fr e] T []

emply /

Class ListCell

Em
class ListCell<T> {

private T datum;

private ListCell<T> next;

public ListCell(T datum, ListCell<T> next){
this.datum = datum;
this.next = next;

3

public T getDatum() { return datum; }

public ListCell<T> getNext() { return next; }
public void setDatum(T obj) { datum = obj; }
public void setNext(ListCell<T> c) { next = c; }

Building a Linked List

ListCell<Integer> c ¢ [stCell: -
= new
ListCell<Integer>(new
Integer(24), null); S,
Integer t new Integer(24); p ListCell: =

Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell<Integer> p =
new ListCell<Integer>(t,
new ListCell<Integer>(s,
new ListCell<Integer>(e, null)));

Accessing List Elements

| = p fistCell:- T —
Linked Lists are
sequential-access data
structures.

To access contents of cell n in
sequence, you must access cells O
-l

0 Accessing data in first

O

Writing to fields

in cells can be
done the same way
Update data in first cell:

cell: p.getDatum()

0 Accessing data in
second cell:

p-getNext() .getDatum()
0 Accessing hext field in

p.setDatum(new Integer(53));

Update data in second cell:
p-gethNext() .setDatum(new

Integer(53));

Chop off third cell:
p-gethNext().setNext(null);

second cell:
p-getNext() -getNext()

Recursion on Lists

1 Recursion can be done on lists
Similar to recursion on integers

o Almost always
Base case: empty list

Recursive case: Assume you can solve problem on the tail,
use that in the solution for the whole list

o Many list operations can be implemented very simply
by using this idea
Although some are easier to implement using iteration

9/16/2010

Building a Linked List (cont’d)

Another way:

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

//Can also use “autoboxing™

p OstCel |5

ListCell<Integer> p
new ListCell<Integer>(e, null);
new ListCell<Integer>(s, p);

p
p = new ListCell<Integer>(t, p);

Note: p = new ListCell<Integer>(s,p):
does not create a circular list!

Access Example: Linear Search

// Here is another version. Why does this work?
public static boolean search(Object x, ListCell c) {
for (G ¢ !'= null; c = c.getNext()) {
if (c.getDatum().equals(x)) return true;
i

return false;

Note: we' ve left off the <Integer> for simplicity

/ Scan list looking for x, return true if found
ublic static boolean search(Object x, ListCell c) {
for (ListCell Ic = c; Ic !'= null; lc = lc.getNext()) {
if (Ic.getDatum().equals(x)) return true;

return false;

Recursive Search

0 Base case: empty list

return false

0 Recursive case: non-empty list
if data in first cell equals object x, return true

else return the result of doing linear search on the tail

Recursive Search
=

public static boolean search(Object x, ListCell c) {
if (c == null) return false;
if (c.getDatum().equals(x)) return true;
return search(x, c.getNext());

public static boolean search(Object x, ListCell c) {
return ¢ != null &&
(c.getDatum().equals(x) || search(x, c.getNext())):

Recursive Reverse

public static ListCell reverse(ListCell c) {
return reverse(c, null);

¥

private static ListCell reverse(ListCell c, ListCell r) {
if (c == null) return r;
return reverse(c.getNext(),
new ListCell(c.getDatum(), r));

Variations on List with Header

0 Header can also
keep other info

Reference to last cell of list

Number of elements in list

Search/insertion/ delefion
as instance methods)

9/16/2010

Reversing a List

o Given a list, create a new list with elements in reverse
order

o Intuition: think of reversing a pile of coins

public static ListCell reverse(ListCell c) {
ListCell rev = null;
for (G ¢ !'= null; c = c.getNext()) {
rev = new ListCell(c.getDatum(), rev);

¥

return rev;

13

o It may not be obvious how to write this recursively...

List with Header

01 Sometimes it is preferable to have a List class distinct
from the ListCell class

0 The List object is like a head element that-atways-exists
even if list itself is empty
] head (7]

class List {
protected ListCell head;
public List(ListCell c) {
head = c;
3
public ListCell getHead()

public void setHead(ListCell c)

Special Cases to Worry About

0 Empty list
add
find
delete

0 Front of list
insert

o End of list
find
delete

0 Lists with just one element

Example: Delete from a List

1 Delete first occurrence of x from a list

O Intuitive idea of recursive code:
If list is empty, return null
If datum at head is x, return tail

Otherwise, return list isting of
/ recursive delete

public static ListCell delete(Object x, ListCell c) {
if (c == null) return null;
if (c.getDatum().equals(x)) return c.getNext();
c.setNext(delete(x, c.getNext()));
return c;

lterative Code for Delete

public void delete (Object x) {
if (head == null) return;
if (head.getDatum().equals(x)) { //x in first cell?
head = head.getNext();
return;

ListCell current = head;

ListCell scout = head.getNext();

while ((scout != null) && !scout.getDatum().equals(x)) {
current = scout;
scout = scout.getNext();

if (scout != null) current.setNext(scout.getNext());
return;

Doubly-Linked vs Singly-Linked

o Advantages of doubly-linked over singly-linked lists

some things are easier — e.g., reversing a doubly-
linked list can be done simply by swapping the
previous and next fields of each cell

don't need the scout to delete

0 Disadvantages
doubly-linked lists require twice as much space
insert and delete take more time

9/16/2010

.
Iterative Delete
:head: [ListCell:
lem isiCell. |
o Two steps:
Locate cell that is the P « current
predecessor of cell to be
deleted (i.e., the cell containing
x)
= Keep two cursors, scout and «— scout
current < current
= scout is always one cell chead
of current
= Stop when scout finds cell
containing x, or falls off end «~— scout
of list
If scout finds cell, update next
field of current cell to splice out
object x from list
o Note: Need special
case for x in first cell =
delete 36 from list
. .
Doubly-Linked Lists
=

o In some applications, it is convenient to have a
ListCell that has references to both its

redecessor and its successor in the list.
class DLLCell {

private Object datum;
private DLLCell next;

Java Arraylist

“Extensible array”

Starts with an initial capacity = size of underlying array

If you try to insert an element beyond the end of the array, it will
allocate a new (larger) array, copy everything over invisibly

Appears infinitely extensible

Advantages:
random access in constant time
dynamically extensible

Disadvantages:
Allocation, copying overhead

