
GRAMMARS &GRAMMARS &
PARSING
Lecture 7
CS2110 – Fall 2009

Java Tipsp
2

Declare fields and methods
instead of

Declare fields and methods
public if they are to be visible
outside the class; helper methods
and private data should be
declared private

if (s.equals("")) {
f = true;

} else {
f = false;declared private

Constants that will never be
changed should be declared
final

f = false;
}
write
f = s.equals("");

Public classes should appear in a
file of the same name
Two kinds of boolean operators:

1 2 l t b th d

instead of
if (s.equals("")) {

f = a;e1 & e2: evaluate both and
compute their conjunction
e1 && e2: evaluate e1; don’t
evaluate e2 unless necessary

f a;
} else {

f = b;
}
write
f = s.equals("")? a : b;

Application of Recursionpp
3

So far, we have discussed recursion on
integers

Factorial, fibonacci, combinations, an

Let us now consider a new application that
shows off the full power of recursion: parsing

Parsing has numerous applications:
compilers data retrieval data miningcompilers, data retrieval, data mining,…

Motivation
4

The cat ate the rat. Not all sequences of words are
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the

Not all sequences of words are
legal sentences
The ate cat rat the
How many legal sentences are The small cat ate the big rat on the

mat slowly.
The small cat that sat in the hat ate
the big rat on the mat slowly.

y g
there?
How many legal programs are
there?g y

The small cat that sat in the hat ate
the big rat on the mat slowly, then
got sick.

Are all Java programs that
compile legal programs?
How do we know what programs
are legal?

…
are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

A Grammar
Sentence → Noun Verb Noun

5

Grammar: set of rules for generating
Noun → boys
Noun → girls
Noun → bunnies

sentences in a language
Examples of Sentence:
boys see bunnies

Verb → like
Verb → see

bunnies like girls
…

White space between words does

Our sample grammar has these
rules:

A Sentence can be a Noun
followed by a Verb followed by a

not matter
The words boys, girls, bunnies, like,
see are called tokens or terminals

followed by a Verb followed by a
Noun
A Noun can be ‘boys’ or ‘girls’ or
‘bunnies’
A Verb can be ‘like’ or ‘see’

The words Sentence, Noun, Verb are
called nonterminals
This is a very boring grammar

A Verb can be ‘like’ or ‘see’ because the set of Sentences is finite
(exactly 18 sentences)

A Recursive Grammar
6

Sentence → Sentence and
S t

Examples of Sentences in this
Sentence
Sentence → Sentence or
Sentence
Sentence → Noun Verb Noun

language:
boys like girls
boys like girls and girls like bunnies
b lik i l d i l lik b iSentence → Noun Verb Noun

Noun → boys
Noun → girls
Noun → bunnies

boys like girls and girls like bunnies
and girls like bunnies
boys like girls and girls like bunnies
and girls like bunnies and girls like

Noun → bunnies
Verb → like
Verb → see

bunnies
………

Wh t k thi t i fi it ?
This grammar is more interesting
than the last one because the set of
Sentences is infinite

What makes this set infinite?
Answer:
Recursive definition of Sentence

Detour
7

What if we want to add a period at the end of every sentence?
Sentence → Sentence and Sentence .
Sentence → Sentence or Sentence .
S t N V b NSentence → Noun Verb Noun .
Noun → …

Does this work?
No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with Periods
8

PunctuatedSentence → Sentence Add a new rule that adds a
.

Sentence → Sentence and
Sentence

period only at the end of
the sentence.

Sentence → Sentence or
Sentence
Sentence → Noun Verb Noun

The tokens here are the 7
words plus the period (.)

Sentence → Noun Verb Noun
Noun → boys
Noun → girls

This grammar is
ambiguous:

boys like girls
Noun → bunnies
Verb → like
Verb → see

boys like girls
and girls like boys
or girls like bunnies

Verb → see

Grammar for Simple
ExpressionsExpressions

9

E → integer Here are some legal expressions:
E → (E + E)

Simple expressions:

2
(3 + 34)
((4+23) + 89)
((89 23) (23 (34 12)))Simple expressions:

An E can be an integer.
An E can be ‘(’ followed by an E
followed by ‘+’ followed by an E

((89 + 23) + (23 + (34+12)))

H ill lfollowed by ‘)’

Set of expressions defined by

Here are some illegal
expressions:
(3
3 + 4

this grammar is a recursively-
defined set

Is language finite or infinite?
D i l

3 + 4

The tokens in this grammar are
(+) and any integerDo recursive grammars always

yield infinite languages?
(, +,), and any integer

Parsingg
10

Grammars can be Example: Show that Grammars can be
used in two ways

A grammar defines a language
(i.e., the set of properly

((4+23) + 89)
is a valid expression E by
building a parse tree

(i.e., the set of properly
structured sentences)
A grammar can be used to
parse a sentence (thus,
checking if the sentence is in

E

(E)E+checking if the sentence is in
the language)

(E)E+

89
(E)E+

To parse a sentence
is to build a parse tree

This is much like diagramming

(E)E+

4 23
This is much like diagramming
a sentence

Recursive Descent Parsingg
11

Idea: Use the grammar to design a recursive program to check if a sentence
is in the language
To parse an expression E, for instance

We look for each terminal (i.e., each token)
Each nonterminal (e.g., E) can handle itself by using a recursive call

The grammar tells how to write the program!
boolean parseE() {
if (first token is an integer) return true;
if (first token is ‘(‘) {

parseE();
Make sure there is a ‘+’ token;Make sure there is a + token;
parseE();
Make sure there is a ‘)’ token;
return true;

}
return false;

}

Java Code for Parsing Eg
12

public static Node parseE(Scanner scanner) {

if (scanner.hasNextInt()) {

int data = scanner.nextInt();

return new Node(data);etu e ode(data);

}

check(scanner, ’(’);

l ft E()left = parseE(scanner);

check(scanner, ’+’);

right = parseE(scanner);

check(scanner, ’)’);

return new Node(left, right);

}}

Detour: Error Handling with
ExceptionsExceptions

13

Parsing does two things:Parsing does two things:
It returns useful data (a parse tree)
It checks for validity (i.e., is the input a validIt checks for validity (i.e., is the input a valid
sentence?)

How should we respond to invalid input?

Exceptions allow us to do this without
complicating our code unnecessarilyp g y

Exceptionsp
14

Exceptions are usually thrown to indicate that p y
something bad has happened

IOException on failure to open or read a file
ClassCastException if attempted to cast an object toClassCastException if attempted to cast an object to
a type that is not a supertype of the dynamic type of the
object
NullPointerException if tried to dereference nullNullPointerException if tried to dereference null
ArrayIndexOutOfBoundsException if tried to access
an array element at index i < 0 or ε the length of the array

In our case (parsing), we should throw an exception
when the input cannot be parsedp p

Handling Exceptionsg p
15

Exceptions can be caught by the programExceptions can be caught by the program
using a try-catch block
catch clauses are called exception handlerscatch clauses are called exception handlers
Integer x = null;
try {

x = (Integer)y;(g)y
System.out.println(x.intValue());

} catch (ClassCastException e) {
System.out.println("y was not an Integer");System.out.println(y was not an Integer);

} catch (NullPointerException e) {
System.out.println("y was null");

}}

Defining Your Own Exceptionsg p
16

An exception is an object (like everything elseAn exception is an object (like everything else
in Java)
You can define your own exceptions and throwYou can define your own exceptions and throw
them
class MyOwnException extends Exception {}

...

if (input == null) {(p) {
throw new MyOwnException();

}

Declaring Exceptionsg p
17

In general, any exception that could be thrown must be either
declared in the method header or caughtdeclared in the method header or caught

void foo(int input) throws MyOwnException {
if (input == null) {
throw new MyOwnException();

}
...

}

Note: throws means “can throw”, not “does throw”
Subtypes of RuntimeException do not have to be declared (e g

}

Subtypes of RuntimeException do not have to be declared (e.g.,
NullPointerException, ClassCastException)

These represent exceptions that can occur during “normal operation of
the Java Virtual Machine”

How Exceptions are Handledp
18

If the exception is thrown from inside the try clause
f bl k ith h dl f th tof a try-catch block with a handler for that

exception (or a superclass of the exception), then that
handler is executed

Otherwise, the method terminates abruptly and control is
passed back to the calling method

If the calling method can handle the exception (i.e., if
the call occurred within a try-catch block with a
handler for that exception) then that handler is

t dexecuted
Otherwise, the calling method terminates abruptly, etc.

If none of the calling methods handle the exception,
the entire program terminates with an error message

Using a Parser to Generate
CodeCode

19

We can modify the
h i

Method parseE can generate
parser so that it
generates stack code to
evaluate arithmetic
expressions:

p g
code in a recursive way:
For integer i, it returns string “PUSH ”
+ i + “\n”

expressions:
2 PUSH 2

STOP

For (E1 + E2),
Recursive calls for E1 and E2 return code
strings c1 and c2, respectively
For (E1 + E2) return

(2 + 3) PUSH 2
PUSH 3
ADD
STOP

For (E1 + E2), return
c1 + c2 + “ADD\n”
Top-level method should tack on a
STOP command after code received STOP

Goal: Method parseE
should return a string
containing stack code for

from parseE

containing stack code for
expression it has parsed

Does Recursive Descent Always
Work?Work?

20

There are some For some constructs recursive
grammars that cannot
be used as the basis for
recursive descent

For some constructs, recursive
descent is hard to use
Can use a more powerful parsing
technique (there are several, but recursive descent

A trivial example (causes infinite
recursion):

S → b

q (,
not in this course)

S → Sa

Can rewrite grammarCan rewrite grammar
S → b
S → bA
A → aA → a
A → aA

Syntactic Ambiguityy g y
21

Sometimes a sentence has
more than one parse tree

This ambiguity actually affects
the program’s meaningmore than one parse tree

S → A | aaxB
A → x | aAb
B → b | bB

The string aaxbb can be parsed in two
ways

the program’s meaning

How do we resolve this?
P id t lways

This kind of ambiguity
sometimes shows up in

Provide an extra non-grammar rule
(e.g., the else goes with the
closest if)
Modify the language (e.g., an if-p

programming languages

if E1 then if E2 then S1 else
S2

statement must end with a ‘fi’)
Operator precedence (e.g.
1 + 2 * 3 should always be parsed
as 1 + (2 * 3), notS2

Which then does the else go
with?

as 1 (2 3), not
(1 + 2) * 3
Other methods (e.g., Python uses
amount of indentation)

Conclusion
22

Recursion is a very powerful technique for writing y p q g
compact programs that do complex things
Common mistakes:

Incorrect or missing base casesIncorrect or missing base cases
Subproblems must be simpler than top-level problem

Try to write description of recursive algorithm and
b t b b f iti dreason about base cases before writing code

Why?
Syntactic junk such as type declarations, etc. can create
mental fog that obscures the underlying recursive
algorithm

Best to separate the logic of the program from coding
detailsdetails

Exercises
23

Think about recursive calls made to parse and p
generate code for simple expressions

2
(2 + 3)()
((2 + 45) + (34 + -9))

Derive an expression for the total number of calls p
made to parseE for parsing an expression

Hint: think inductively

Derive an expression for the maximum number of
recursive calls that are active at any time during
the parsing of an expression (i e max depth ofthe parsing of an expression (i.e. max depth of
call stack)

Exercises
24

Write a grammar and recursive program for
li dpalindromes
mom
dad
i prefer pii prefer pi
race car
murder for a jar of red rum
sex at noon taxes

W it d i f t iWrite a grammar and recursive program for strings
AnBn

AB
AABBAABB
AAAAAAABBBBBBB

Write a grammar and recursive program for Java
identifiersidentifiers

<letter> [<letter> or <digit>]0…N

j27, but not 2j7

